Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:26:18.529Z Has data issue: false hasContentIssue false

Source and grain-size influences upon the clay mineral distribution in the Skagerrak and northern Kattegat

Published online by Cambridge University Press:  09 July 2018

H. Bengtsson
Affiliation:
Department of Geology, Earth Sciences Centre, Göteborg University, Box 460, S-40530 Göteborg, Sweden
R. L. Stevens
Affiliation:
Department of Geology, Earth Sciences Centre, Göteborg University, Box 460, S-40530 Göteborg, Sweden

Abstract

Bottom sediments from 78 sites in the Skagerrak-Kattegat area have been used to determine the semi-quantitative distribution of clay minerals, and to interpret sediment provenance and the transport pathways. The sediment reflects incorporation of four sources, affected both by earlier glacial processes and on-going marine mixing. The southern North Sea, characterized by dioctaheadral illite, kaolinite and smectite, is the dominating source. The central North Sea provides a limited, but significant, source for chlorite. The sediment from the Swedish west coast has an unweathered character, containing trioctaheadral illite, vermiculite, illite-vermiculite mixed-layer minerals and chlorite. The contribution from the southern Kattegat (southern Sweden and Denmark) is dominated by kaolinite and smectite. Correlation between clay content and the contents of smectite, kaolinite and chlorite in the Skagerrak indicate that the clay mineral distribution is influenced by sorting. This grain-size dependency must be considered when interpreting sources.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bengtsson, H. (1991) Mineralogiska undersökningar av jordmånsprover från Västergötland. GU/CTH publikationsserie, B 362, 142.Google Scholar
Biscaye, P.E. (1964) Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. Am. Miner. 46, 12811289.Google Scholar
Bondam, J. (1967) Undersøgekser vedrerende de geokemiske forhold i kaolinforekomsten ved Rønne på Bomholm. Dan. Geol. Foren. Medd. 17, 297365.Google Scholar
Brown, G., editor (1961) X-ray Identification and Crystal Structures of Clay Minerals. Second edition. Mineralogical Society, London.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305-359 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G.W. & Brown, G., editors). Mineralogical Society, Monograph 5, London.Google Scholar
Drever, J.I. (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am. Miner. 58, 553554.Google Scholar
Eisma, D. & Kalf, J. (1987) Dispersal, concentration and deposition of suspended matter in the North Sea. J. Geol. Soc. London, 144, 161-178.Google Scholar
Eisma, D., Jansen, J.H.F. & vanWeering, T.C.E. (1979) Sea floor morphology and recent sediment movement in the North Sea. Pp. 217-231 in: The Quaternary of the North Sea. (E. Oele, Schüttenhelm, R.T.E. & Wiggers, A.J., editors). Acta Univ. Ups. Symp. Univ. Ups. Annum Quintegentesimum Celebrantis, Uppsala.Google Scholar
Griffin, J.J., Windom, H. & Goldberg, E.D. (1968) The distribution of clay minerals in the world ocean. Deep-sea Res. 15, 433459.Google Scholar
Jorgensen, P., Erlenkeuser, H., Lange, H., Nagy, J., Rumohr, J. & Werner, F. (1981) Sedimentological and stratigraphical studies of two cores in the Skagerrak. Pp. 397–414 in: Holocene Marine Sedimentation in the North Sea Basin. (Nio, S.-D., Schüttenhelm, R.T.E. & van Weering, T.C.E., editors). Spec. Publ. Int. Assoc. Sedimentol. 5.Google Scholar
Krumbein, W.C. & Pettijohn, F.C. (1938) Manual of Sedimentary Petrography. Appleton-Century-Crotts Inc., New York.Google Scholar
Kuijpers, A., Dennegård, B., Albinsson, Y. & Jensen, A. (1993) Sediment transport pathways in the Skagerrak and Kattegat as indicated by sediment Chernobyl radioactivity and heavy metal concentrations. Pp. 231–244 in: Holocene Sedimentation in the Skagerrak. (G. Liebezeit, van Weering, T.C.E. & Rumohr, J., editors). Mar. Geol. 111.Google Scholar
Lepland, A. & Stevens, R.L. (1996) Mineral magnetic and textural interpretations of sedimentation in the Skagerrak, eastern North Sea. Mar. Geol. 135, 5164.Google Scholar
Liebezeit, G., vanWeering, T.C.E. & Rumohr, J., editors (1993) Holocene sedimentation in the Skagerrak. Mar. Geol. 111.Google Scholar
Lång, L.-O. & Stevens, R.L. (1996) Weathering variability and aluminium interlayering: clay mineralogy of podzol profiles in till and glaciofluvial deposits, SW Sweden. Appl. Geochem. 11, 8792.CrossRefGoogle Scholar
Melkerud, P.-A. (1984) Distribution of clay minerals in soil profiles – a tool in chronostratigraphical and lithostratigraphical investigations of till. Striae 20, 3137.Google Scholar
Meyenburg, G. & Liebezeit, G. (1993) Mineralogy and geochemistry of a core from the Skagerrak/Kattegat boundary. Pp. 337–344 in: Holocene Sedimentation in the Skagerrak. (Liebezeit, G., van Weering, T.C.E. & Rumohr, J., editors). Mar. Geol. 111.Google Scholar
Nielsen, O.B. (1974) Sedimentation and diagenesis of Lower Eocene sediments at Ølst, Denmark. Sediment. Geol. 12, 2544.Google Scholar
Pederstad, K.. (1982) Sedimentologiske, mineralogiske og geokjemiske unders0kelser av sedimenter fra Oslofjorden og Skagerrak. PhD thesis, Univ. Oslo, Norway.Google Scholar
Pederstad, K. & Jørgensen, P. (1985) Weathering in a marine clay during postglacial time. Clay Miner. 20, 477491.Google Scholar
Pederstad, K., Roaldset, E. & Rønningsland, T.M. (1993) Sedimentation and environmental conditions in the inner Skagerrak-outer Oslofjord. Pp. 245-264 in: Holocene Sedimentation in the Skagerrak. (Liebezeit, G., van Weering, T.C.E. & Rumohr, J., editors). Mar. Geol. 111.Google Scholar
Reynolds, R.C., Jr. (1985) NEWMOD® a Computer Program for the Calculation of One-dimensional Diffraction Patterns of Mixed-layer Clays. R.C. Reynolds, 8 Brook Rd., Hanover, N.H.Google Scholar
Reynolds, R.C., Jr. (1989) Principles and techniques of quantitative analysis of clay minerals by X-ray powder diffraction. Pp. 4–36 in: Quantitative Mineral Analysis of Clays. (Pevear, D.R. & Mumpton, F.A., editors). The Clay Mineral Society, CMS Workshop Lectures, vol. 1, Evergreen, Colorado.Google Scholar
Rodhe, J. (1987) The large scale circulation in the Skagerrak: interpretations of some observations. Tellus, 39A, 245-253.Google Scholar
Rosenberg, R., editor (1996) Swedish West Coast Project. J. Sea. Res. 35, 1234.CrossRefGoogle Scholar
Rønningsland, T.M. (1976) Mineralogi og geokjemi av resente leirsedimenter i Skagerrak, Kattegat og tilgrensende fjordområder. Cand. Real, thesis, Univ. Oslo, Norway.Google Scholar
Snäll, S., Persson Ch. & Wikstrüm, A. (1973) Mineralogisk undersökning av morän från ett områtde väster om Katrineholm. SGU. Ser. C, 761, 1-32.Google Scholar
Stevens, R.L., April, R. & Wedel, P. (1987) Sediment color and weathered preglacial sources of Quaternary clays in southwestern Sweden. Geol. Fören. Stockh. Förh. 109, 241253.Google Scholar
Stevens, R.L., Bengtsson, H. & Lepland, A. (1996) Textural provinces and transport interpretations with fine-grained sediments in the Skagerrak. J. Sea Res. 35, 99110.Google Scholar
Svansson, A. (1975) Physical and chemical oceanography of the Skagerrak and Kattegat. 1. Open sea conditions. Fish. Board, Swed. Inst. Mar. Res. Rep. 1, 188.Google Scholar
vanWeering, T.C.E. (1981) Recent sediments and sediment transport in the northern North Sea; surface sediments of the Skagerrak. Pp. 335–359 in: Holocene Marine Sedimentation in the North Sea Basin. (Nio, S.-D., Schüttenhelm, R.T.E. & van Weering, T.C.E., editors). Spec. Publ. Int. Assoc. Sedimentol. 5.Google Scholar
vanWeering, T.C.E. (1982) Recent sediments and sediment transport in the northern North Sea; pistoncores from the Skagerrak. Proc. Koninklyke Akademie van Wetenschappen Series. B85, 155201.Google Scholar
Wirth, H. & Weisner, M.G. (1988) Sedimentary facies in the North sea. Mitt. Geol.-Paläontol. Inst. Univ. Hamburg, 65, 269287.Google Scholar
Zöllmer, V. & Irion, G. (1993) Clay mineral and heavy metal distributions in the north-eastern North Sea. Pp. 223– 230 in: Holocene Sedimentation in the Skagerrak. (Liebezeit, G., van Weering, T.C.E. & Rumohr, J., editors). Mar. Geol. 111.Google Scholar