Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T20:57:10.576Z Has data issue: false hasContentIssue false

Smectite stability in acid salt solutions and the fate of Eu, Th and U in solution

Published online by Cambridge University Press:  09 July 2018

A. Bauer*
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, AK Chemie der Versatzmaterialien, PO Box 3640, D-76021 Karlsruhe, Germany
T. Schäfer
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, AK Chemie der Versatzmaterialien, PO Box 3640, D-76021 Karlsruhe, Germany
R. Dohrmann
Affiliation:
BGR, Tonforschung, Stilleweg 2, D-30655, HannoverGermany
H. Hoffmann
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, AK Chemie der Versatzmaterialien, PO Box 3640, D-76021 Karlsruhe, Germany
J. I. Kim
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, AK Chemie der Versatzmaterialien, PO Box 3640, D-76021 Karlsruhe, Germany
*

Abstract

The alteration and transformation behaviour of Ceca smectite in two acid and saline solutions (NaCl and KCl) was studied in batch experiments. This type of smectite is proposed as potential backfill material for nuclear waste storage sites. The initial solution was enriched with 500 ppm of U, Th and Eu. The evolution of pH and solution concentrations were measured over a period of 25 months. The mineralogical and chemical evolution of the clays was also studied. X-ray diffraction revealed a significant loss of diffraction intensity and the clays became amorphous to Xrays with increasing reaction time. Deconvolution of the XRD data indicated a continuous collapse of the smectite layers but no illitization. Infrared spectroscopy revealed unchanged smectite spectra at the end of the experiment. Thorium precipitated as amorphous ThO2, but showed an incipient crystallization after 500 days. The Th, Eu and U were neither adsorbed onto the clays nor incorporated into a secondary phase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M., Mäder, U. & Waber, N. (1998) Experiment vs. modelling: Diffusive and advective interaction of high-pH solution in argillaceous rock at 358C. Goldschmidt Conference Abstracts 1998. Mineral. Mag. 62A, 1516.CrossRefGoogle Scholar
Bauer, A. & Berger, G. (1998) Kaolinite and smectite dissolution rate in high molar KOH solutions at 35 and 808C. Appl. Geochem. 13. 905916.CrossRefGoogle Scholar
Bauer, A. & Velde, B. (1999) Smectite transformation in KOH solutions. Clay Miner. 34, 261276.CrossRefGoogle Scholar
Bauer, A., Velde, B. & Berger, G. (1998) Kaolinite transformation in high molar KOH solutions. Appl. Geochem. 13, 619629.CrossRefGoogle Scholar
Bauer, A., Hofmann, H., Warr, L. & Schaefer, T. (2000) Alterationskinetik von Tonmineralien in salinen und granitischen Grundwässern (Konsequenzen fu¨ r die Radionu klidru¨ ckhalt ung in einem nuklea ren Endlager). Jahresbericht des INE-FZK (in press).Google Scholar
Carroll, S.A. & Walther, J.A. (1990) Kaolinite dissolution at 258, 608 and 808C. Am. J. Sci. 290, 797810.CrossRefGoogle Scholar
Carroll-Webb, S. & Walther, J. V. (1988) A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution. Geochim. Cosmochim. Acta, 52, 26092623.CrossRefGoogle Scholar
Chermak, J.A. (1992) Low temperature experimental investigation of the effect of high pH NaOH solutions on the Opalinus Shale, Switzerland. Clays Clay Miner. 40, 650658.CrossRefGoogle Scholar
Chermak, J.A. (1993) Low temperature investigation on the effect of high pH KOH on the Opalinus Shale Switzerland. Clays Clay Miner. 41, 365372.CrossRefGoogle Scholar
Čičel, B. & Machajdik, D. (1981) Potassium-and ammonium-treated montmorillonites. I. Interstratified structures with ethylene glycol and water. Clays Clay Miner. 29, 4046.CrossRefGoogle Scholar
Day, P.R. (1965) Particle fractionation and particle size analysis. Pp. 545567 in: Methods of Soil Analysis (Black, C.A., editor). American Society of Agronomy Inc.Google Scholar
Eberl, D.D. (1978) The reaction of montmorillonite to mixed-layer clay. Geochim. Cosmochim. Acta, 42, 17.CrossRefGoogle Scholar
Eberl, D.D. & Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed layer clays. Clays Clay Miner. 25, 215227.CrossRefGoogle Scholar
Eberl, D.D., Velde, B. & McCormick, T. (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH. Clay Miner. 28, 4960.CrossRefGoogle Scholar
Grambow, B. & Mu¨ ller, R. (1990) Chemistry of glass corrosion in high saline brines. Mat. Res. Soc. Symp. Proc. 176, 229240.CrossRefGoogle Scholar
Grambow, B., Loida, A., Dressler, P. Geckeis, H., Gago, J., Casas, I., de Pablo, J., Gimenez, J. & Torrero, M.E (1997) Chemical reaction of fabricated and high burn-up spent UO2 fuel with saline brines. EUR 17111 En.Google Scholar
Huang, W. J. (1993) The formation of illitic clays from kaolinite in KOH solution from 2258C to 3508C. Clays Clay Miner. 6, 645654.Google Scholar
Inoue, A. (1983) Potassium fixation by clay minerals during hydrothermal treatment. Clays Clay Miner. 31, 8191.CrossRefGoogle Scholar
Inoue, A. & Watanabe, T. (1989) Infra-red spectra of interstratified illite/smectite from hydrothermally altered tuffs (Shinzan, Japan) and diagenetic bentonites (Kinnekulle, Sweden). Clay Sci. 7, 263275.Google Scholar
Jardine, P.M., Zelaszny, L.W. & Evans, A. (1986) Solution aluminium anomalies resulting from various filtering materials. Soil Sci. Am. J. 50, 891894.CrossRefGoogle Scholar
Jennings, S. & Thompson, G.R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California. J. Sed. Pet. 56, 8998.Google Scholar
Klug, H.P. & Alexander, L.E. (1954) Crystallite-size determination from line broadening. Pp. 495538 in: X-ray Diffraction Procedures. J. Wiley & Sons, Chichester, UK.Google Scholar
Komareni, S. & White, W.B. (1983) Hydrothermal reaction of strontium and transuranic simulator elements with clay minerals, zeolites and shales. Clays Clay Miner. 31, 113.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting). A convenient way to study clay minerals. Clays Clay Miner. 45, 132146.CrossRefGoogle Scholar
Lee, S.Y. & Tank, R.W. (1985) Role of clays in the disposal of nuclear waste: a review. Appl. Clay Sci. 1, 145162.CrossRefGoogle Scholar
Machajdik, D. & Čičel, B (1981) Potassium-and ammo n ium-treatedmon tmorillonites. II. Calculation of characteristic layer charges. Clays Clay Miner. 29, 4752.CrossRefGoogle Scholar
Meier, L. & Kahr, G. 1999. Determination of the Cation Exchange Capacity (CEC) of Clay Minerals using the Complexes of Copper (II) Ion with Triethylenetetramine and Tetraethylenepentamine. Clays Clay Miner. 47, 386388.CrossRefGoogle Scholar
Mohnot, S.M., Bae, J.H. & Foley, W.L. (1987) A study of alkali/mineral reactions. SPE Reservoir Engineering, v. Nov. 1987, 653663.CrossRefGoogle Scholar
Moore, D.M. & Jr.Reynolds, C.R., (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Nagy, K.L. (1995) Dissolution and precipitation kinetics of sheet silicates. Pp. 173225 in. Chemical weathering rates of silicate weathering (White, F.W. & Brantley, S.L., editors). Reviews in Mineralogy, 31. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Neck, V. and Kim, J.I. (1999) Solubility and hydrolysis of tetravalent actinides. FZK Bericht, 6350.Google Scholar
Rai, D., Moore, A.M. & Yui, M. (1999) Effect of temperature on the crystallinity and solubility product of hydrous Thorium oxide. Abstracts 7th Int. Conf. Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere (Migration’99), Lake Tahoe, Nevada/California (USA).Google Scholar
Jr.Reynolds, R.C., (1985) NEWMOD, a computer program for the calculation of basal diffraction intensities of mixed layer clay minerals. Reynolds, R.C., editor. 8 Brook Rd., Hanover, NH.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1167 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M. J., editor). Chapman & Hall, London.CrossRefGoogle Scholar
Velde, B. (1965) Experimental determination of muscovite polymorph stabilities. Am. Miner. 50, 436449.Google Scholar