Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T17:12:09.277Z Has data issue: false hasContentIssue false

Smectite clay from the Sabga deposit (Cameroon): mineralogical and physicochemical properties

Published online by Cambridge University Press:  09 July 2018

J. R. Mache*
Affiliation:
URAGEs Argiles, Géochimie et Environnements sédimentaires, Département de Géologie, Université de Liège, B18, Allée du 6 Aot, B-4000 Liège, Belgique Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun Mission de Promotion des Matériaux Locaux, B.P 2396 Yaoundé, Cameroun
P. Signing
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun
A. Njoya
Affiliation:
Mission de Promotion des Matériaux Locaux, B.P 2396 Yaoundé, Cameroun
F. Kunyukubundo
Affiliation:
Université de Yaoundé I, Département de Science de la Terre, B.P. 812 Yaoundé, Cameroun
J. A. Mbey
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-Université de Lorraine, 15 Avenue du Charmois, B.P. 40. F-54501, Vandœuvre-lès-Nancy Cedex, France
D. Njopwouo
Affiliation:
Laboratoire de Physico-chimie des Matériaux Minéraux, Département de Chimie Inorganique, Université de Yaoundé 1, B.P. 812 Yaoundé, Cameroun
N. Fagel
Affiliation:
URAGEs Argiles, Géochimie et Environnements sédimentaires, Département de Géologie, Université de Liège, B18, Allée du 6 Aot, B-4000 Liège, Belgique
*

Abstract

The physicochemical and mineralogical characterization of the <250 μm particle-size fraction from six clay-rich samples from the Sabga deposit (north-west, Cameroon) were carried out to evaluate their potential applications. The major clay mineral is dioctahedral smectite and minor kaolinite is present in three of the clay samples. Cristobalite, feldspars, ilmenite and heulandite are accessory minerals. Application of the Greene-Kelly test revealed that the smectite present is montmorillonite. The chemical composition (wt.%) of the bulk clays consists of (66–70%) SiO2, (13–16%) Al2O3 and (2–7%) Fe2O3. Physico-chemical characterization of the clays showed that the cation exchange capacity (CEC) and the specific surface area range from 38 to 46 meq/100 g and from 33 to 90 m2/g respectively. The physical and chemical properties are fully compatible with potential uses in environmental applications. After purification and chemical modification, these materials could also be used in refining edible oil as adsorbent, waste water treatment and wine technology.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brigatti, M.F., Galan, E. & Theng, B.K.G. (2006) Structure and mineralogy of clay minerals. Pp. 309–377 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors), Elsevier, 1, Oxford.Google Scholar
Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis in X-ray mineralogy laboratory. Pp. 997–1007 in: Initial Reports of the DSDP (Kaneps, A.G., editor). Printing Office, Washington, D.C. Google Scholar
Dogan, M., Dogan, A.U., Yesilyurt, F.I., Dogan, A., Buckner, I. & Wurster, D.E. (2007) Basline studies of the Clay Minerals Society special clays: specific surface area by the Brunauer, Emmett, Teller (BET) method. Clays and Clay Minerals, 55, 534–541.Google Scholar
Dohrmann, R. (2006) Cation exchange capacity methodology II: A modified silver-thiourea method. Applied Clay Science, 34, 38–46.Google Scholar
Eno Belinga, S.M., Ekodeck, G.E., Njeng, E. & Ossah, N.H. (1977) L’altération argileuse des roches basiques de la région de Maroua Nord-Cameroun. Annales de la Faculté des Sciences, Université de Yaoundé, 23 (24), 65–77.Google Scholar
Fowden, L., Barrer, R.M. & Tinker, R.B. (1984) Clay minerals: their structure, behaviour and use. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 311, 219–432.Google Scholar
Graetsch, H. (1988) Structural characteristics of opaline and microcrystalline silica minerals. Pp. 209–232 in: Silica. Physical Behavior, Geochemistry and Materials Applications. (Heaney, P.J., Prewitt, C.T. & Gibbs, G.V., editors), Reviews in Mineralogy, 29. Mineralogical Society of America, Washington DC, USA.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity. Academic Press, London.Google Scholar
Hajjaji, M., Kacim, S. & Boulmane, M. (2001) Mineralogy and firing characteristics of clay from the valley of Ourika (Morocco). Applied Clay Science, 21, 203–212.Google Scholar
Hartwell, J.M. (1965) The diverse uses of montmorillonite. Clay Minerals, 6, 111–118.CrossRefGoogle Scholar
Holtzapffel, T. (1985) Les Minéraux Argileux : Préparation, Analyse Diffractomé trique et Détermination, 77–109. Société Géologique du Nord, France.Google Scholar
Hradil, D., Grygar, T. S., Kova, M. H., Ka, P.B., Lang, K., Schneeweiss, O.I. & Chvátal M. (2004) Green earth pigment from the Kadan region, Czech Republic: use of rare Fe-rich smectite. Clays and Clay Minerals, 52, 767–778.CrossRefGoogle Scholar
Hussin, F., Aroua, M.K. & Daud, W.M.A. (2011) Textural characteristics, surface chemistry and activation of bleaching earth. Chemical Engineering Journal, 170, 90–106.Google Scholar
Kamga, R., Nguetnkam, J.P. & Villieras, F. (2001) Caractérisation des argiles du nord Cameroun en vue de leur utilisation dans la décoloration des huiles végétales. Pp. 247–257 in : Actes de la Première Conférence sur la Valorisation des Matériaux Argileux au Cameroun (Nkoumbou, C. & Njopwouo, D., editors). Yaoundé, Cameroun.Google Scholar
Kamgang, P., Njonfang, E., Chazot, G. & Tchoua, F. (2007) Géochimie et géochronologie des laves des monts Bamenda (ligne volcanique du Cameroun). Comptes Rendus Geosciences, 339, 659–666.Google Scholar
Kamgang, P., Njonfang, E., Chazot, G. & Tchoua, F. (2008) Geochemistry and geochronology of mafic rocks from Bamenda Mountains (Cameroon): source composition and crustal contamination along the Cameroon Volcanic Line. Comptes Rendus Geoscience, 340, 850–857.Google Scholar
Kloprogge, J.T., Komarneni, S. & Amonette, J.E. (1999) Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529–554.Google Scholar
Komarneni, S. & Breval, E. (1985) Characterization of smectites synthesised from zeolites and mechanism of smectite synthesis. Clay Minerals, 20, 181–188.Google Scholar
Lim, C.H. & Jackson, M.L. (1986) Expandable phyllosilicate reactions with lithium on heating. Clays and Clay Minerals, 34, 346–352.Google Scholar
Mackenzie, R.C. (1970) Simple phyllosilicate based on gibbsite and brucite-like sheets. Pp. 498537 in: Differential Thermal Analysis of Clays (Mackenzie, R.C., editor). Academic Press, New York.Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibration Spectroscopy, 31, 1–10.Google Scholar
Madejová, J., Komdel, P. & Cicel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319–326.Google Scholar
Madejová, J., Bujdák, J., Janek, M. & Komadel, P. (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochimica Acta Part A, 54, 1397–1406.Google Scholar
Malla, P.B. & Douglas, L.A. (1987) Problems in identification of montmorillonite and beidellite. Clays and Clay Minerals, 35, 232–236.Google Scholar
Moenke, H.H.W. (1974) Silica, the three-dimensional silicates, borosilicates and beryllium silicates. Pp. 365–382 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 179–201. Oxford University Press, Oxford.Google Scholar
Murray, H.H. (1995) Clays in industry and the environment. Pp. 49–55 in: Clays Controlling the Environment; Proceedings of the 10th International Clay Conference, Adelaide, Australia, 1993 (Churchman, G.J., Fitzpatrick, R.V. & Eggleton, R.A., editors). CSIRO Publishing, Melbourne, Australia.Google Scholar
Njopwouo, D. (1993) Chimie, minéralogie, texture et comportement rhéologique des argiles comestibles au Cameroun. Pp. 1–90 in: Etudes Préliminaires (Njopwouo, D., editor). Rapport Séjour Scientifique, France.Google Scholar
Njoya, A., Ekodeck, G.E., Nkoumbou, C., Njopwouo, D. & Tchoua, M. F. (2001) Matériaux argileux au Cameroun: gisements et exploitation. Pp. 13–30 in : Actes de la Première Conférence sur la Valorisation des Matériaux Argileux au Cameroun (Nkoumbou, C. & Njopwouo, D., editors). Yaoundé, Cameroun.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin, N.A., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (West Cameroon). Applied Clay Science, 32, 125–140.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J. & Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619.Google Scholar
Thiobault, P.M. & Le Berre, P. (1985) Les Argiles pour Brique B.R.G.M. CRMO, 65, MINMEE, Cameroun.Google Scholar
Thorez, J. (2000) Cation-satured swelling physils: an XRD revisitation. Pp. 71–85 in: Proceedings of the First Latin-American Clay Conference (Gomes, C.F., editor). Associacao Portuguesa de Argilas, Madeira.Google Scholar
Yvon, J., Lietard, O. & Cases, J.M. (1982) Minéralogie des argiles kaoliniques des Charentes. Bulletin de Minéralogie, 105, 431–437.CrossRefGoogle Scholar