Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:50:28.428Z Has data issue: false hasContentIssue false

Significance of K-Ar dating of very low-grade metamorphism in Triassic-Jurassic pelites from the Coastal Range of central Chile

Published online by Cambridge University Press:  09 July 2018

M. Belmar*
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
D. Morata
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
F. Munizaga
Affiliation:
Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
C. Pérez de Arce
Affiliation:
Servicio Nacional de Geología y Minería, Santa Maria 0104, Providencia, Santiago, Chile
S. Morales
Affiliation:
Departamento de Mineralogía-Petrología, Facultad Ciencias, Universidad de Granada, Avenida Fuentenueva s/n., Granada, 18002, Spain
F. J. Carrillo
Affiliation:
Departamento de Mineralogía-Petrología, Facultad Ciencias, Universidad de Granada, Avenida Fuentenueva s/n., Granada, 18002, Spain
*

Abstract

K-Ar isotopic dating of very low-grade metamorphism affecting Triassic-Jurassic rocks in the Coastal Range of central Chile was carried out on whole rocks and their <2 mm size fractions. In the study area, a regional-burial low-grade metamorphism at anchizone conditions (T ≤190°C) and low-pressure conditions (P ≥1.3 kbar) has been described. The highest observed temperatures are related to a contact metamorphism produced by nearby Jurassic intrusions, with a P-T estimate at the immediate contact zone of ~650–690°C and 4 kbar.

The whole-rock K-Ar age of 174±5 Ma is interpreted as belonging to the contact metamorphism due to the intrusion of Jurassic plutons (165±5 Ma to 175±5 Ma). A time-interval of ~20 Ma between the diagenesis (206 Ma) and the anchizonal very low-grade metamorphism (181–184 Ma) is obtained, and a rate of subsidence of ~120 m/Ma is proposed for these Triassic-Jurassic basins. A thermal influence on the burial, very low-grade, regional metamorphism is invoked.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkai, P., Balogh, K. & Dunkl, I. (1995) Timing of lowtemperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Bükkium, innermost Western Carpathians, Hungary. Geologische Rundschau, 84, 334–344.Google Scholar
Belmar, M., Schmidt, S.Th., Ferreiro-Mählmann, R., Mullis, J., Stern, W.B. & Frey, M. (2002) Diagenesis, low-grade and contact metamorphism in the Triassic-Jurassic of Vichuquén-Tilicura and Hualené-Gualleco Basins, Coast Range of Chile. Schweizeriche Mineralogische und Petrographische Mitteilungen, 82, 375–392.Google Scholar
Bravo, P. (2001) Geología del Borde Oriental de la cordillera de la costa entre los Rıos Mataquito y Maule, VII región. Memoria de Titulo, Universidad de Chile, Departamento de Geología, Santiago, Chile.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23, 471–485.CrossRefGoogle Scholar
Clauer, N. & Chaudhuri, S. (1999) Isotopic dating of very low-grade metasedimentary and metavolcanic rocks: techniques and methods. Pp. 202–226 in: Low-grade Metamorphism (Frey, M. and Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Clauer, N., Rais, N., Schaltegger, U. & Piqué, A. (1995) KAr systematic of clay-to-mica minerals in a multistage low-grade metamorphic evolution. Chemical Geology, 124, 305–316.CrossRefGoogle Scholar
Clauer, N., Środoń, J., Francu, J. & Šucha, V. (1997) K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals, 32, 181–196.CrossRefGoogle Scholar
Corvalán, J. (1976) El Triásico y Jurásico de Vichuquén- Tilicura y de Hualañé, provincia de Curicó. Implicaciones Paleogeográficas. Pp. A137–A154 in: Primer Congreso Geológico Chileno, Santiago, Chile. Vol. 1.Google Scholar
Corvalán, J. (1982) El Límite Triásico-Jurásico en la Cordillera de la Costa de las Provincias de Curicó y Talca. Pp F63–F85 in: Tercer Congreso Geológico Chileno, Concepcion, Chile, Vol. 3.Google Scholar
Corvalán, J. (1994) El Triásico y Jurásico de Vichuquén, Hualané, Curepto y Gualleco. Unpublished map, Servicio Nacional de Geología y Minería of Chile.Google Scholar
Dalla Torre, M., Stern, W.B. & Frey, M. (1994) Determination of white K-mica polytype ratios: Comparison of different XRD methods. Clay Minerals, 29, 717–726.Google Scholar
Gana, P. & Hervé, F. (1983) Geología del Basamento Cristalino en la Cordillera de la Costa entre los rìos Mataquito y Maule, VII Región, Chile. Revista Geológica de Chile, 19/20, 37–56.Google Scholar
Gonzales-Bonorino, F. (1971) Metamorphic facies series of the crystalline basement of central Chile. Journal of Petrology, 12, 149–175.Google Scholar
Gonzales-Bonorino, F. & Aguirre, L. (1970) Metamorphic facies series of the crystalline basement of Chile. Geologische Rundschau, 59, 979–994.Google Scholar
Hervé, F. (1988) Late Paleozoic Subduction and Accretion in Southern Chile. Episodes, 11, 183–188.CrossRefGoogle Scholar
Hervé, F., Munizaga, F., Godoy, E. & Aguirre, L. (1974) Late Paleozoic K/Ar ages of blueschists from Pichilemu, central Chile. Earth and Planetary Science Letters, 23, 261–264.CrossRefGoogle Scholar
Hervé, F., Kawashita, K. & Munizaga, F. (1982) Edades Rb/Sr de los cinturones metamórficos pareados de Chile Central. Pp. D116–D135 in: Tercer Congreso Geológico Chileno, Concepción, Chile, vol. 3.Google Scholar
Holland, T. & Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphiboles–plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433–447.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. & Schwander, H. (1986) The evolution of illite to muscovite: mineralogical and isotopic date from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92, 157–180.Google Scholar
Kisch, H. (1991). Illite crystallinity: recomendations on sample preparation, X-ray diffraction setting, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665–670.Google Scholar
Kübler, B. (1967) La crystallinité de l’illite et les zones tout à fait supérieures du métamorphisme. Etages tectoniques. Colloque de Neuchâtel, 105–122.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse, tempera ture et calorimétrie. Pp. 489–596 in: Thérmométrie et Barométrie Géologiques (Lagache, M., editor). Societé Française de Minéralogie et Cristallographie, Paris.Google Scholar
Martin, M.W., Kato, T.T., Rodriguez C, Godoy, E., Duhart, P., McDonough, M. & Campos, A. (1999) Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°–41°S): Constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics, 18, 582–605.Google Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very lowgrade metamorphism inpelitic rocks. Pp. 61–107 in: Low-grade Metamorphism (Frey, M. and Robinson, D., editors). Blackwell Science Ltd., Oxford, UK.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 378 pp.Google Scholar
Morel, R. (1981) Geología del sector norte de la hoja Gualleco, entre los 35°00’ y los 35°10’ latitud sur, provincia de Talca, VII Region, Chile. Tesis de Grado, M.Cs., Universidad de Chile, Departamento de Geología, Santiago.Google Scholar
Munizaga, F., Aguirre, L. & Hervé, F. (1973) Rb/Sr ages of rocks from the Chilean metamorphic basement. Earth and Planetary Science Letters, 18, 87–91.Google Scholar
Munizaga, F., Hervé, F., Drake, R., Pankhurst, R.J., Brook, M. & Snelling, N. (1988) Geochronology of the Lake Region of south-central Chile (39°–42°S): Preliminary results. Journal of South American Earth Sciences, 1, 309–316.CrossRefGoogle Scholar
Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon- bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119–133.Google Scholar
Steiger, R.H. & Jäger, E. (1977) Subcommission on geochronology: convention on use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.Google Scholar
Środoń, J. (2002) Quantitative mineralogy of sedimentary rocks with emphasis on clay and with applications to K-Ar dating. Mineralogical Magazine, 66, 677–687.CrossRefGoogle Scholar
Środoń, J., ClauerN. & Eberl, D.D. (2002) Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modelling. American Mineralogist, 87, 1528–1535.CrossRefGoogle Scholar
Thiele, R. & Morel, R. (1981) Tectonica Triásico-Jurásica en la Cordillera de la Costa, al norte y sur del Río Mataquito (34°45’–35°15’ Lat. S), Chile. Revista Geológica de Chile, 13/14, 49–61.Google Scholar
Vergara, M., Levi, B., Nyström, J. & Cancino, A. (1995) Jurassic and Early Cretaceous island arc volcanism, extension, and subsidence in the Coast Range of central Chile. Geological Society of America Bulletin, 10, 1427–1440.Google Scholar
Willner, A., Hervé, F. & Massonne, H. (2000) Mineral chemistry and pressure-temperature evolution of two contrasting high-pressure-low-temperature belts in the Chonos Archipelago, Southern Chile. Journal of Petrology, 41, 309–330.Google Scholar
Willner, A.P., Thomson, S.N., Kröner, A., Wartho, J.-A., Wijbrans, J. & Hervé, F. (submitted) Time markers for the evolution and exhumation history of an Upper Paleozoic paired metamorphic belt in Central Chile (34°–35°30’S). Journal of Petrology. Google Scholar
Zhao, M.W., Ahrendt, H. & Wemmer, K. (1997) K-Ar systematic of illite/smectite in argillaceous rocks from the Ordos basin, China. Chemical Geology, 136, 153–169.CrossRefGoogle Scholar