Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T19:33:54.013Z Has data issue: false hasContentIssue false

A review of microbial redox interactions with structural Fe in clay minerals

Published online by Cambridge University Press:  09 July 2018

L. Pentráková
Affiliation:
University of Illinois, Urbana, Illinois, USA Institute of Inorganic Chemistry, SAS, Bratislava, Slovakia
K. Su
Affiliation:
University of Illinois, Urbana, Illinois, USA Southwest Jiaotong University, Chengdu, China
M. Pentrák
Affiliation:
University of Illinois, Urbana, Illinois, USA Institute of Inorganic Chemistry, SAS, Bratislava, Slovakia
J. W. Stucki*
Affiliation:
University of Illinois, Urbana, Illinois, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Virtually all 2:1 clay minerals contain some Fe in their crystal structure, which may undergo redox reaction with surrounding redox-active species causing potentially significant changes in the chemical and physical properties of the clay mineral and its surrounding matrix. This phenomenon was originally of interest mostly as a laboratory experiment using strong inorganic reduction agents, but the discovery that the structural Fe could be reduced by microorganisms in natural soils and sediments opened the way for this to become a practical method for altering the chemical and physical properties of soils and sediments in situ. The purpose of this report was to review the body of literature that has been published since the inception of this field of inquiry and to complement, update, and complete three other reviews that have been published during the intervening years. Studies of microbial reduction of structural Fe in smectites have revealed the extent of reduction, effects on chemical and physical properties, reversibility (or lack thereof) of microbial reduction, stoichiometry, possible reaction mechanism, and types of organisms involved. Some organisms are also capable of oxidizing structural Fe, such as in biotite or reduced smectite, while one appears to be able to do both. Illitic layers resist reduction by microorganisms, but this can be partially overcome by the presence of an electron shuttle compound such as anthraquinone-2,6-disulfonate, which also enhances the extent of reduction in smectites. Microorganisms may be employed as an in situ reducing agent to drive redox cycles for structural Fe in constituent clay minerals of soils and sediments, which in turn can serve as an abiotic source for redox-mediated remediation of environmental contaminants.

Type
10th George Brown Lecture
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2013 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

References

Alexandrov, V., Neumann, A., Scherer, M.M. & Rosso, K. (2013) Electron exchange and conduction in nontronite from first principles. Journal of Physical Chemistry C, 117, 2032–2040.CrossRefGoogle Scholar
Alimova, A., Block, K., Rudolph, E., Katz, A., Steiner, J.C., Gottlieb, P. & Alfano, R.R. (2006) Bacteria-clay interactions investigated by light scattering and phase contrast microscopy. Pp. 76–79 in: Optical Diagnostics and Sensing VI (G.L. Coté & A.V. Priezzhev, editors). SPIE Proc., 6094.Google Scholar
Alimova, A., Katz, A., Steiner, N., Rudolph, E., Wei, H., Steiner, J.C. & Gottlieb, P. (2009) Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation. Clays and Clay Minerals, 57, 205–212.CrossRefGoogle Scholar
Bishop, M.E. & Dong, H.L. (2010) Reactivity of clay minerals towards technetium immobilization. Geochimica et Cosmochimica Acta, 74, A93, Supplement 1.Google Scholar
Bishop, M.E., Jaisi, D.P., Dong, H.L., Kukkadapu, R.K. & Ji, J. (2010) Bioavailability of Fe(III) in loess sediments: An important source of electron acceptors. Clays and Clay Minerals, 58, 542–557.CrossRefGoogle Scholar
Bishop, M.E., Dong, H.L., Kukkadapu, R.K. & Edelmann, R.E. (2011) Microbial reduction of Fe(III) in multiple clay minerals by Shewanella putrefaciens and reactivity of bioreduced clay minerals toward Tc(VII) immobi l ization. Geochimica et Cosmochimica Acta, 75, 5229–5246.Google Scholar
Bromfield, S.M. (1954) Reduction of ferric compounds by soil bacteria. Journal of General Microbiology, 11, 1–6.CrossRefGoogle ScholarPubMed
Cervini-Silva, J., Kostka, J.E., Larson, R.A., Stucki, J.W. & Wu, J. (2003) Dehydrochlorination of 1,1,1,- trichloroethane and pentachloroethane by microbially reduced ferruginous smectite. Environmental Toxicology and Chemistry, 22, 1046–1050.Google ScholarPubMed
Dong, H.L (2010) Mineral-microbe interactions: a review. Frontiers of Earth Science in China, 4, 127–147.CrossRefGoogle Scholar
Dong, H.L. (2012) Clay-microbe interactions and implications for environmental mitigation. Elements, 8, 113–118.Google Scholar
Dong, H.L., Kostka, J.E. & Kim, J. (2003a) Microscopic evidence for microbial dissolution of smectite. Clays and Clay Minerals, 51, 502–512.CrossRefGoogle Scholar
Dong, H.L., Kukkadapu, R.K., Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., & Kostandarithes, H.M. (2003b) Microbial reduction of structural Fe(III) in illite and goethite. Environmental Science & Technology, 37, 1268–1276.CrossRefGoogle Scholar
Dong, H.L., Jaisi, D.P., Kim, J.W. & Zhang, G.X. (2009a) Microbe-clay mineral interactions. American Mineralogist, 94, 1505–1519.CrossRefGoogle Scholar
Dong, H.L., Jaisi, D.P., Zhang, G.X. & Kim, J.W. (2009b) Microbe-clay mineral interactions and implications for environmental remediation. The 237th Annual Meeting of American Chemical Society, Salt Lake City, Abstracts, 68.Google Scholar
Ernstsen, V. (1996) Reduction of nitrate by Fe2+ in clay minerals. Clays and Clay Minerals, 44, 599–608.CrossRefGoogle Scholar
Ernstsen, V., Gates, W.P., & Stucki, J.W. (1998) Microbial reduction of structural iron in clays – A renewable source of reduction capacity. Journal of Environmental Quality, 27, 761–766.CrossRefGoogle Scholar
Eslinger, E., Highsmith, P., Albers, D. & Demayo, B. (1979) Role of iron reduction in the conversion of smectite to illite in bentonites in the disturbed belt, Montana. Clays and Clay Minerals, 27, 327–338.CrossRefGoogle Scholar
Favre, F., Tessier, D., Abdelmoula, M., Génin, J.M., Gates, W.P. & Boivin, P. (2002a) Iron reduction and CEC changes in intermittently reduced soil. European Journal of Soil Science, 53, 1–9.CrossRefGoogle Scholar
Favre, F., Tessier, D., Abdelmoula, M., Génin, J.M., Gates, W.P. & Boivin, P. (2002b) Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil. European Journal of Soil Science, 53, 175–183.CrossRefGoogle Scholar
Favre, F., Jaunet, A.M., Pernes, M., Badraoui, M., Boivin, P. & Tessier, D. (2004) Changes in clay organization due to structural iron reduction in a flooded vertisol. Clay Minerals, 39, 123–134.CrossRefGoogle Scholar
Fialips, C.I., Cooper, N.G.A., Jones, D.M., White, M.L. & Gray, N.D. (2010) Reductive degradation of p,p’- DDT by Fe(II) in nontronite NAu-2. Clays and Clay Minerals, 58, 821–836.CrossRefGoogle Scholar
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Kukkadapu, R.K., McKinley, J.P., Heald, S.M., Liu, C. & Plymale, A.E. (2004) Reduction of TcO4- by sediment-associated biogenic Fe(II). Geochimica et Cosmochimica Acta, 68, 3171–3187.CrossRefGoogle Scholar
Gates, W.P., Wilkinson, H.T. & Stucki, J.W. (1993) Swelling properties of microbially reduced ferruginous smectite. Clays and Clay Minerals, 41, 360–364.CrossRefGoogle Scholar
Gates, W.P., Stucki, J.W. & Wilkinson, H.T. (1994) Microbial reduction of smectite structural Fe. The American Chemical Society, Abstracts, 207, 79.Google Scholar
Gates, W.P., Stucki, J.W. & Kirkpatrick, R.J. (1996) Structural properties of reduced Upton montmorillonite. Physics and Chemistry of Minerals, 23, 535–541.CrossRefGoogle Scholar
Gates, W.P., Jaunet, A.M., Tessier, D., Cole, M.A., Wilkinson, H.T. & Stucki, J.W. (1998) Swelling and texture of iron-bearing smectites reduced by bacteria. Clays and Clay Minerals, 46, 487–497.CrossRefGoogle Scholar
Gorski, C.A., Aeschbacher, M., Soltermann, D., Voegelin, A., Baeyens, B., Marques Fernandes, M., Hofstetter, T.B. & Sander, M. (2012a) Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environmental Science & Technology, 46, 9360–9368.Google ScholarPubMed
Gorski, C.A., Klüpfel, L., Voegelin, A., Sander, M. & Hofstetter, T.B. (2012b) Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environmental Science & Technology, 46, 9369–9377.Google ScholarPubMed
Grybos, M., Billard, P., Desobry-Banon, S., Michot, L.J., Lenain, J.F. & Mustin, C. (2011) Bio-dissolution of colloidal-size clay minerals entrapped in microporous silica gels. Journal of Colloid and Interface Science, 362, 317–32.CrossRefGoogle ScholarPubMed
Guo, M.R., Lin, Y.M., Xu, X.P. & Chen, Z.L. (2010a) Bioleaching of iron from kaolin using Fe(III)- reducing bacteria with various carbon nitrogen sources. Applied Clay Science, 48, 379–383.CrossRefGoogle Scholar
Guo, M.R., He, Q.X., Li, Y.M., Lu, X.Q. & Chen, Z.L. (2010b) Removal of Fe from kaolin using dissimilatory Fe(III)-reducing bacteria. Clays and Clay Minerals, 58, 515–521.CrossRefGoogle Scholar
Hama, K., Bateman, K., Coombs, P., Hards, V.L. Milodowski, A.E., West, J.M., Wetton, P.D., Yoshida, H., & Aoki, K. (2001) Influence of bacteria on rockwater interaction and clay mineral formation in subsurface granitic environments. Clay Minerals, 36, 599–613.CrossRefGoogle Scholar
He, Q.X., Huang, X.C. & Chen, Z.L. (2011) Influence of organic acids, complexing agents and heavy metals on the bioleaching of iron from kaolin using Fe(III)-reducing bacteria. Applied Clay Science, 51, 478–483.CrossRefGoogle Scholar
Jaisi, D.P., Dong, H.L. & Liu, C.X. (2007a) Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochimica et Cosmochimica Acta, 71, 1145–1158.CrossRefGoogle Scholar
Jaisi, D.P., Dong, H.L., Kim, J.W., He, Z., & Morton, J.P. (2007b) Particle aggregation kinetics during microbial reduction of Fe(III) in nontronite. Clays and Clay Minerals, 55, 96–107.CrossRefGoogle Scholar
Jaisi, D.P., Dong, H. & Liu, C.X. (2007c) Kinetic analysis of microbial reduction of Fe(III) in nontronite. Environmental Science & Technology, 41, 2437–2444.CrossRefGoogle ScholarPubMed
Jaisi, D.P., Ji, S.S., Dong, H.L., Blake, R.E., Eberl, D.D. & Kim, J.W. (2008a) Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River delta plain, Louisiana, USA. Clays and Clay Minerals, 56, 416–428.CrossRefGoogle Scholar
Jaisi, D.P., Dong, H.L. & Morton, J.P. (2008b) Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc(VII) reduction. Clays and Clay Minerals, 56, 175–189.CrossRefGoogle Scholar
Jaisi, D.P., Dong, H.L., Plymale, A.E., Fredrickson, J.K., Zachara, J.M., Heald, S.M. & Liu, C.X. (2009) Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chemical Geology, 264, 127–138.CrossRefGoogle Scholar
Jaisi, D.P., Eberl, D.D., Dong, H.L. & Kim, J. (2011) The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction. Clays and Clay Minerals, 59, 21–33.CrossRefGoogle Scholar
Kashefi, K, Shelobolina, E.S., Elliott, W.C. & Lovley, D.R. (2008) Growth of thermophilic and hyperthermophilic Fe (III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Applied and Environmental Microbiology, 74, 251–258.CrossRefGoogle Scholar
Kim, J.W., Furukawa, Y., Daulton, T.L., Lavoie, D. & Newell, S.W. (2003) Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study. Clays and Clay Minerals, 51, 382–389.CrossRefGoogle Scholar
Kim, J.W., Dong, H.L., Seabaugh, J.L., Newell, S.W. & Eberl, D.D. (2004) Role of microbes in the smectiteto- illite reaction. Science, 303, 830–832.CrossRefGoogle ScholarPubMed
Komadel, P., Stucki, J.W. & Wilkinson, H.T. (1987) Reduction of structural iron in smectites by microorganisms. The Sixth Meeting of the European Clay Groups Sevilla, 322–324.Google Scholar
Komadel, P. & Stucki, J.W. (1988) Quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: III. A rapid photochemical method. Clays and Clay Minerals, 36, 379–381.CrossRefGoogle Scholar
Kostka, J.E., Stucki, J.W., Nealson, K.H. & Wu, J. (1996) Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays and Clay Minerals, 44, 522–529.CrossRefGoogle Scholar
Kostka, J.E., Haefele, E., Viehweger, R. & Stucki, J.W. (1999a) Respiration and dissolution of iron(III)-containing clay minerals by bacteria. Environmental Science & Technology, 33, 3127–3133.CrossRefGoogle Scholar
Kostka, J.E., Wu, J., Nealson, K.H. & Stucki, J.W. (1999b) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63, 3705–3713.CrossRefGoogle Scholar
Kostka, J.E., Stucki, J.W. & Dong, H.L. (2002a) Microbial reduction of Fe(III) bound in clay minerals: Laboratory investigations of growth and mineral transformation. The American Chemical Society, Abstracts, 223, 598.Google Scholar
Kostka, J.E., Dalton, D.D., Skelton, H., Dollhopf, S. & Stucki, J.W. (2002b) Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Applied and Environmental Microbiology, 68, 6256–6262.CrossRefGoogle ScholarPubMed
Kukkadapu, R.K., Zachara, J.M., Fredrickson, J.K., McKinley, J.P., Kennedy, D.W., Smith, S.C. & Dong, H.L. (2006) Reductive biotransformation of Fe in shale-limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochimica et Cosmochimica Acta, 70, 3662–3676.CrossRefGoogle Scholar
Lear, P.R. & Stucki, J.W. (1989) Effects of iron oxidation state on the specific surface area of nontronite. Clays and Clay Minerals, 37, 547–552.CrossRefGoogle Scholar
Lee, E.Y., Cho, K.S., Ryu, H.W. & Chang, Y.K. (1999) Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers. Journal of Bioscience and Bioengineering, 87, 397–399.CrossRefGoogle ScholarPubMed
Lee, E.Y., Cho, K.S. & Ryu, H.W. (2002) Microbial refinement of kaolin by iron-reducing bacteria. Applied Clay Science, 22, 47–53.CrossRefGoogle Scholar
Lee, K., Kostka, J.E. & Stucki, J.W. (2006) Comparisons of structural Fe reduction in smectites by bacteria and dithionite: an infrared spectroscopic study. Clays and Clay Minerals, 54, 195–208.CrossRefGoogle Scholar
Li, O., Bleam, W.F., Kostka, J.E., Stucki, J.W. & Lee, K. (2003) Polarized EXAFS studies of nontronite by anaerobic bacteria. The American Chemical Society, Abstracts, 226, 492.Google Scholar
Li, Y.L., Vali, H., Sears, S.K., Yang, J., Deng, B. & Zhang, C. (2004) Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 68, 3251–3260.CrossRefGoogle Scholar
Liu, D., Wang, H.M., Qiu, X.A., & Dong, H.L. (2010) Comparison of reduction extent of Fe(III) in nontronite by Shewanella putrefaciens and Desulfovibrio vulgaris. Journal of Earth Science, 21, 297–299.CrossRefGoogle Scholar
Liu, D., Dong, H.L., Bishop, M.E., Wang, H.M., Agrawal, A., Tritschler, S., Eberl, D.D. & Xie, S. (2011) Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochimica et Cosmochimica Acta, 75, 1057–1071.CrossRefGoogle Scholar
Liu, D., Dong, H.L, Bishop, M.E., Zhang, J., Wang, H., Xie, S., Wang, S., Huang, L. & Eberl, D.D. (2012) Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium. Geobiology, 10, 150–162.CrossRefGoogle ScholarPubMed
Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Philips, E.J.P. & Coates, J.D. (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica, 26, 152–157.3.0.CO;2-D>CrossRefGoogle Scholar
Maurice, P.A., Vierkorn, M.A., Hersman, L.E., Fulghum, J.E. & Ferryman, A. (2001a) Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacterium. Geomicrobiology Journal, 18, 21–35.Google Scholar
Maurice, P.A., Vierkorn, M.A., Hersman, L.E. & Fulghum, J.E. (2001b) Dissolution of well and poorly ordered kaolinites by an aerobic bacterium. Chemical Geology, 180, 81–97.CrossRefGoogle Scholar
Munch, J.C. & Ottow, J.C.G. (1977) Model experiments on the the mechanism of bacterial iron-reduction in water-logged soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 140, 549–562.Google Scholar
Munch, J.C. & Ottow, J.C.G. (1982) Effect of cell contact and iron(III)-oxide form on bacterial iron reduction. Zeitschrift für Pflanzenernährung und Bodenkunde, 145, 66–77.Google Scholar
Munch, J.C., Hillebrand, T. & Ottow, J.C.G. (1978) Transformation in the Feo/Fed ratio of pedogenic iron oxides affected by iron-reducing bacteria. Journal of Canadian Soil Science, 58, 475–486.CrossRefGoogle Scholar
Myers, C.R. & Nealson, K.H. (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science, 240, 1319–1321.CrossRefGoogle ScholarPubMed
Neumann, A., Sander, M. & Hofstetter, T.B. (2011) Redox properties of structural Fe in smectite clay minerals. Chapter 17 in: Aquatic Redox Chemistry (P. Tratnyek et al., editors). ACS Symposium Series, American Chemical Society, Washington DC.Google Scholar
Onysko, S.J., Kleinmann, R.L.P. & Erickson, P.M. (1984) Ferrous iron oxidation by thiobacillus ferrooxidans: Inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate. Applied and Environmental Microbiology, 481, 229–231.Google Scholar
O’Reilly, S.E., Bickmore, B.R. & Furukawa, Y. (2004) Dissolution of microbial reduced nontronite in a flow-through system. P. 86 in: 41st Annual Meeting of the Clay Minerals Society, Program and Abstracts.Google Scholar
O’Reilly, S.E., Watkins, J., & Furukawa, Y. (2005) Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron-reducing bacteria. Geochemical Transactions, 6, 67–76.Google ScholarPubMed
O’Reilly, S.E., Furukawa, Y. & Newell, S. (2006) Dissolution and microbial Fe(III) reduction of nontronite (NAu-1). Chemical Geology, 235, 1–11.Google Scholar
Ottow, J.C.G. (1968) Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction in aerobacter aerogenes. Zeitschrift für Allgemeine Mikrobiologie, 85, 441–443.Google Scholar
Ottow, J.C.G. (1969) Influence of nitrate, chlorate, sulfate, form of iron oxide, and growth conditions on the extent of bacteriological reduction of iron. Zeitschrift für Pflanzenernährung und Bodenkunde, 124, 238–253.Google Scholar
Ottow, J.C.G. & von Klopotek, A. (1969) Enzymatic reduction of iron oxide by fungi. Applied Microbiology, 18, 41–43.CrossRefGoogle ScholarPubMed
Perdrial, J.N., Warr, L.N., Perdrial, N., Lett, M.C. & Elsass, F. (2009) Interaction between smectite and bacteria: Implications for bentonite as backfill material in the disposal of nuclear waste. Chemical Geology, 264, 281–294.CrossRefGoogle Scholar
Prakash, O., Gihring, T.M., Dalton, D.D., Chin, K.-J., Green, S.J., Akob, D.M., Wanger, G. & Kostka, J.E. (2010) Geobacter daltonii sp. nov., an iron(III)- and uranium(VI)-reducing bacterium isolated from the shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. International Journal of Systematic and Evolutionary Microbiology, 60, 546–553.CrossRefGoogle ScholarPubMed
Ribeiro, F.R., Kostka, J.E. & Stucki, J.W. (2009a) Comparisons of structural iron reduction in phyllosilicates by bacteria and dithionite. P. 67 in: The 237th Annual Meeting of American Chemical Society, Salt Lake City, Abstracts.Google Scholar
Ribeiro, F.R., Fabris, J.D., Kostka, J.E., Komadel, P. & Stucki, J.W. (2009b) Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite. Pure and Applied Chemistry, 81, 1499–1509.CrossRefGoogle Scholar
Rinder, G. (1979) Effect of clay minerals on the behavior of acidophilic Thiobacillus species in suspensions. Zeitschrift für Allgemeine Mikrobiologie, 19, 643–665.Google Scholar
Sand, W. (1989) Ferric iron reduction by thiobacillus ferrooxidans at extremely low pH-values. Biogeochemistry, 7, 195–201.CrossRefGoogle Scholar
Schaefer, M.V., Gorski, C.A. & Scherer, M.M. (2011) Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Environmental Science & Technology, 45, 540–545.CrossRefGoogle Scholar
Scott, A.D. & Amonette, J.E. (1988) Role of iron in mica weathering. Pp. 537–623 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwermann, U., editors). Dordrecht, D. Reidel, The Netherlands.Google Scholar
Seabaugh, J.L., Dong, H.L., Kukkadapu, R.K., Eberl, D., Morton, J.P. & Kim, J.W. (2006) Microbial reduction of Fe(III) in the Fithian and Muloorina illites: Contrasting extents and rates of bioreduction. Clays and Clay Minerals, 54, 67–79.CrossRefGoogle Scholar
Shelobolina, E.S., Vanpraagh, C.G. & Lovley, D.R. (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiology Journal, 20, 143–156.CrossRefGoogle Scholar
Shelobolina, E.S., Anderson, R.T., Vodyanitskii, Y.N., Sivtsov, A.M., Yuretich, R. & Lovley, D.R. (2004) Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer. Geobiology, 2, 67–76.CrossRefGoogle Scholar
Shelobolina, E.S., Pickering, S.M. & Lovely, D.R. (2005) Fe-cycle bacteria from industrial clays mined in Georgia, USA. Clays and Clay Minerals, 53, 580–586.CrossRefGoogle Scholar
Shelobolina, E.S., Konishi, H., Xu, H., Benzine, J., Xiong, M.Y., Wu, T., Blöthe, M., & Roden, E. (2012a) Isolation of phyllosilicate-iron redox cycling microorganisms from an illite-smectite rich hydromorphic soil. Frontiers in Microbiology, 3, 1–10.CrossRefGoogle ScholarPubMed
Shelobolina, E.S., Xu, H., Konishi, H., Kukkadapu, R., Wu, T., Blöthe, M., & Roden, E. (2012b) Microbial lithotrophic oxidation of structural Fe(II) in biotite. Applied and Environmental Microbiology, 78, 5746–5752.CrossRefGoogle ScholarPubMed
Shen, S. & Stucki, J.W. (1994) Effects of iron oxidation state on the fate and behavior of potassium in soils. Pp. 173–185 in: Soil Testing: Prospects for Improving Nutrient Recommendations (Havlin, J.L. & Jacobsen, J., editors) Soil Science Society of America, Madison, Wisconsin.CrossRefGoogle Scholar
Soljanto, P., Rehtijarvi, P. & Tuovinen, O.H. (1985) Ferrous iron oxidation by Thiobacillus ferooxidans: Inhibition of finely ground particles. Geomicrobiology Journal, 2, 1–12.Google Scholar
Stanjek, H. & Marchel, C. (2008) Linking the redox cycles of Fe oxides and Fe-rich clay minerals: an example from a palaeosol of the Upper Freshwater Molasse. Clay Minerals, 43, 69–82.CrossRefGoogle Scholar
Starkey, R.L. & Halvorson, H.O. (1927) Studies on the transformations of iron in nature. II Concerning the importance of microorganisms in the solution and precipitation of iron. Soil Science, 24, 381–402.CrossRefGoogle Scholar
Straub, K.L., Benz, M., Schink, B. & Widdel, F. (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62, 1458–1460.CrossRefGoogle ScholarPubMed
Stucki, J.W. (1988) Structural iron in smectites. Pp. 625–675 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). D.Reidel, Dordrecht, The Netherlands.Google Scholar
Stucki, J.W. (2006) Properties and behaviour of iron in clay minerals. Pp. 429–482 in: Handbook of Clay Science (Bergaya, F., Theng, B.G.K., & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Stucki, J.W. (2009) Overview of redox biogeochemistry of iron in phyllosilicates. In: The 237th Annual Meeting of American Chemical Society, Salt Lake City, Abstract 64.Google Scholar
Stucki, J.W. (2011) A review of the effects of iron redox cycles on smectite properties. Comptes Rendus - Geoscience, 343, 199–209.CrossRefGoogle Scholar
Stucki, J.W. (2013). Properties and behaviour of iron in clay minerals. In: Handbook of Clay Science, 2nd edition (Bergaya, F. & Lagaly, G., editors). Elsevier, Amsterdam (in press).Google Scholar
Stucki, J.W. & Getty, P.J. (1986) Microbial reduction of iron in nontronite. P. 279 in: Agronomy Abstracts, 1986 annual meetings of the Soil Science Society of America.Google Scholar
Stucki, J.W. & Kostka, J.E. (2006) Microbial reduction of iron in smectite. Comptes Rendus - Geoscience, 338, 468–475.CrossRefGoogle Scholar
Stucki, J.W. & Lear, P.R. (1989) Variable oxidation states of iron in the crystal structure of smectite clay minerals. ACS Symposium Series, 415, 330–358.Google Scholar
Stucki, J.W., Low, P.F., Roth, C.B. & Golden, D.C. (1984) Effect of iron oxidation state on clay swelling. Clays and Clay Minerals, 32, 357–362.CrossRefGoogle Scholar
Stucki, J.W., Komadel, P. & Wilkinson, H.T (1987) Microbial reduction of structural iron(III) in smectites. Soil Science Society of America Journal, 51, 1663–1665.CrossRefGoogle Scholar
Stucki, J.W., Gan, H. & Wilkinson, H.T. (1992) Effects of microorganisms on phyllosilicate properties and behavior. Pp. 227–254 in: Advances in Soil Science (Wagenet, R.J., Baveye, P. & Stewart, B.A., editors). Lewis Publishers, Boca Raton, Florida.Google Scholar
Stucki, J.W., Bailey, G.W. & Gan, H. (1996) Oxidationreduction mechanisms in iron-bearing phyllosilicates. Applied Clay Science, 10, 417–430.CrossRefGoogle Scholar
Stucki, J.W., Lee, K., Zhang, L.Z. & Larson, R.A. (2002) Effects of iron oxidation state on the surface and structural properties of smectites. Pure and Applied Chemistry, 74, 2145–2158.CrossRefGoogle Scholar
Su, K., Radian, A., Mishael, Y., Yang, L. & Stucki, J.W. (2012) Nitrate reduction by redox-activated, polydiallyldimethylammonium-exchanged ferruginous smectite. Clays and Clay Minerals, 60, 464–472.CrossRefGoogle Scholar
Sugio, T., Tano, T. & Imai, K. (1981) Isolation and some properties of silver ion-resistant iron-oxidizing bacterium Thiobacillus ferrooxidans. Agricultural and Biological Chemistry, 459, 2037–2051.Google Scholar
Tor, J.M., Xu, J.C., Stucki, J.W., Wander, M.M. & Sims, G.K. (2000) Trifluralin degradation under microbiologically induced nitrate and Fe(III) reducing conditions. Environmental Science & Technology, 34, 3148–3152.CrossRefGoogle Scholar
Tung, H.C., Price, P.B., Bramall, N.E. & Vrdoljak, G. (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology, 6, 69–86.CrossRefGoogle ScholarPubMed
Vempati, R.K., Kollipara, K.P., Stucki, J.W. & Wilkinson, H.T. (1995) Reduction of structural iron in selected iron-bearing minerals by soybean root exudates grown in an in vitro geoponic system. Journal of Plant Nutrition, 18, 343–353.CrossRefGoogle Scholar
Vodyanitskii, Y.N. (2007) Reductive biogenic transformation of Fe(III)-containing phyllosilicates (review of publications). Eurasian Soil Science, 40, 1355–1363.CrossRefGoogle Scholar
Vorhies, J.S. & Gaines, R.R. (2009) Microbial dissolution of clay minerals as a source of iron and silica in marine sediments. Nature Geoscience, 2, 221–225.CrossRefGoogle Scholar
Wu, J., Roth, C.B. & Low, P.F. (1988) Biological reduction of structural iron in sodium-nontronite. Soil Science Society of America Journal, 52, 295–296.CrossRefGoogle Scholar
Wu, T., Shelobolina, E.S., Xu, H., Konishi, H., Kukkadapu, R.K. & Roden, E.E. (2012) Isolation and microbial reduction of Fe(III) phyllosilicates from subsurface sediments. Environmental Science & Technology, 46, 11618–11626.CrossRefGoogle ScholarPubMed
Xu, J.C., Stucki, J.W., Wu, J., Kostka, J.E. & Sims, G.K. (2001) Fate of atrazine and alachlor in redox-treated ferruginous smectite. Environmental Toxicology and Chemistry, 20, 2717–2724.Google ScholarPubMed
Yang, J., Kukkadapu, R.K., Dong, H.L., Shelobolina, E.S., Zhang, J. & Kim, J. (2012) Effects of redox cycling of iron in nontronite on reduction of technetium. Chemical Geology, 291, 206–216.CrossRefGoogle Scholar
Zhang, G.X., Dong, H.L., Jiang, H.C., Xu, Z. & Eberl, D.D. (2006) Unique microbial community in drilling fluids from Chinese continental scientific drilling, Geomicrobiology Journal, 23, 499–514.CrossRefGoogle Scholar
Zhang, G.X., Dong, H.L., Kim, J., & Eberl, D.D. (2007a) Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, 92, 1411–1419.CrossRefGoogle Scholar
Zhang, G.X., Kim, J.W., Dong, H.L. & Andre, J.S. (2007b) Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer. American Mineralogist, 92, 1401–1410.CrossRefGoogle Scholar
Zhang, G.X., Senko, J.M., Kelly, S.D., Tan, H., Kemner, K.M. & Burgos, W.D. (2009) Microbial reduction of iron(III)-rich nontronite and uranium(VI), Geochimica et Cosmochimica Acta, 73, 3523–3538.CrossRefGoogle Scholar
Zhang, G.X., Burgos, W.D., Senko, J.M., Bishop, M.E., Dong, H.L., Boyanov, M.I. & Kemner, K.M. (2011) Microbial reduction of chlorite and uranium followed by air oxidation, Chemical Geology, 283, 242–250.CrossRefGoogle Scholar
Zhang, J., Dong, H.L., Liu, D., Fischer, T.B., Wang, S. & Huang, L. (2012) Microbial reduction of Fe(III) in illite-smectite minerals by methanogen Methanosarcina mazei. Chemical Geology, 292-293, 35–44.Google Scholar