Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:30:34.287Z Has data issue: false hasContentIssue false

Removal of organic matter by disodium peroxodisulphate: effects on mineral structure, chemical composition and physicochemical properties of some clay minerals

Published online by Cambridge University Press:  09 July 2018

A. P. Menegatti
Affiliation:
Laboratory for Clay Mineralogy, Geotechnical Engineering, ETH-Zurich
G. L. Früh-Green
Affiliation:
Institute for Mineralogy and Petrography, ETH-Zurich, Switzerland
P. Stille
Affiliation:
CNRS Centre de Géochimie de la Surface, Strasbourg, France

Abstract

The use of disodium peroxodisulphate combined with a neutral buffer is a new method for the efficient removal of organic matter from clay-bearing sediments. The effects of this oxidation procedure on mineral structure were investigated by treatment of different standard clay minerals (kaolinite ‘china clay’, illite ‘Le Puy’, montmorillonite SWy-1). The materials were characterized by means of XRD, FTIR, SEM and TEM before and after leaching with disodium peroxodisulphate. Systematic experiments were conducted to determine the effects of leaching on the chemical and isotopic composition of oxygen, hydrogen and K-Ar in these samples. Effects on the physicochemical properties of the clays such as BET external surface area, cation exchange capacity (CEC) and expandability with ethylene glycol were also investigated. The results show that structure, chemical composition, oxygen and hydrogen isotope ratios, as well as the K-Ar system remain unaffected by leaching with disodium peroxodisulphate. The CEC and expandability remain unchanged, whereas changes in BET area can be attributed to mechanical dispersion by ultrasonic treatment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.U. (1963) An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays Clay Miner. 12, 380388.Google Scholar
Bonhomme, M.G., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique de l'Instituí de Géologie, Univ. L. Pasteur, Strasbourg. 3, 53 p.Google Scholar
Borthwick, J. & Harmon, R.S. (1982) A note regarding C1F3 as an alternative to BrF5 for oxygen isotope analysis. Geochim. Cosmochim. Acta, 46, 16651668.CrossRefGoogle Scholar
Bristow, C.M. (1993) The genesis of the China Clays of South-West England — a multistage story. Pp. 171-203 in: Kaolin Genesis and Utilization (Murray, H. et al, editors), Clay Minerals Society Spec. Publ., 1, Boulder, CO, USA.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular systems. J. Am. Chem. Soc. 60, 309319.CrossRefGoogle Scholar
Clauer, N. & Chaudhuri, S. (1995) Clays in Crustal Environments, Isotope Dating and Tracing. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Fagan, R. & Longstaffe, F. (1997) Hydrogen-isotope exchange in smectite? Abstract, 11th Int. Clay Conf. Ottawa. Google Scholar
Gaudette, H.E., Grim, R.E. & Metzger, C.E. (1966) Illite, A model based on the sorption behaviour of cesium. Am. Miner. 51, 16491656.Google Scholar
Gluskoter, H.I. (1964) Electronic low-temperature ashing of bituminous coal. Fuel, 43, 285291.Google Scholar
Girard, J.-P. & Fouillac, A.-M. (1995) Géochimie isotopique de l'oxygène et de l'hydrogène des argiles: exemples d'application aux domaines diagénétique et géothermique. Bull. Centres Reck Explor.-Prod. Elf Aquitaine, 19, 167195.Google Scholar
Grim, R.E., Bray, R.H. & Bradley, W.F. (1937) The mica in argillaceous sediments. Am. Miner. 11, 813-829.Google Scholar
Hower, J. & Mowatt, T. (1966) The mineralogy of illites and mixed-layer illite-montmorillonites. Am. Miner. 51, 825854.Google Scholar
Kóster, H.M. (1996) Mineralogical and chemical heterogeneity of three standard clay mineral samples. Clay Miner. 31, 417422.CrossRefGoogle Scholar
Jackson, M.L. (1956) Soil Chemical Analysis - Advanced Course. (Jackson, M.L., editor) Madison, Wisconsin.Google Scholar
Mackenzie, R.C. (1951) A micromethod for determination of cation-exchange capacity of clay. J. Coll. Sci. 6, 219222.Google Scholar
Maegdefrau, E. & Hofman, U. (1937) Glimmerartige Mineralien als Tonsubstanzen. Zeitschr. Kristallographie, -geometric -physik, -chemie, 98, 3159.Google Scholar
Magyar, S. & Von Moos, A. (1947) Der glimmerartige Ton in der Trias des Mte. Casiano, Kt. Tessin. Schweiz. Mineral. Petrogr. Mitt. 27, 2134.Google Scholar
Meier, L.P. & Menegatti, A.P. (1997) A new, efficient, one step method for the removal of organic matters from clay containing sediments. Clay Miner. 32, 557563.CrossRefGoogle Scholar
Mitchell, B.D., Smith, B.F.L. & De Endredy, A.S. (1971) The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays. Israel J. Chem. 9, 4552.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford University Press, Oxford, Second Edition.Google Scholar
Mourn, J. & Rosenqvist, I.T. (1958) Hydrogen (protium)- deuterium exchange in clays. Geochim. Cosmochim. Acta, 14, 250252.Google Scholar
Müller-Vonmoos, M. & Jenny, F. (1970) Einfluss der Beschallung auf Kürnung, rheologische Eigenschaften, Sedimentationsverhalten und Injizierbarkeit wässriger Opalit-Suspensionen. Beitr. zur Geol. der Schweiz, 50, 227243.Google Scholar
Pusch, R. (1966) Ultrasonic dispersion of clay suspensions. Geologiska Föreningens i Stockholm Förhanlingar, 88, 395403.CrossRefGoogle Scholar
Roberson, H.E., Weir, A.H. & Woods, R.D. (1968) Morphology of particles size-fractionated Na-montmorillonites. Clays Clay Miner. 16, 239247.CrossRefGoogle Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 11-67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor), Chapman & Hall, London.Google Scholar
Savin, S.M. & Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim. Cosmochim. Acta, 34, 2542.CrossRefGoogle Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Miner. 31, 124.CrossRefGoogle Scholar
Środoń, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner. 28, 401411.CrossRefGoogle Scholar
Srodoñ, J. & Eberl, D. (1980) The presentation of X-ray data for clay minerals. Clay Miner. 15, 317320.CrossRefGoogle Scholar
Taieb, R. (1990) Les isotopes de l'hydrogéne, carbone et oxygene dans les sediments argileux et les eaux de formation. These, Inst. Nat. Polytechnique de Lorraine, Nancy, France.Google Scholar
Van Olphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and other Non-metallic Minerals. (Van Olphen, H. & Fripiat, J., editors) Pergamon Press, Oxford.Google Scholar
Weiss, A. (1958) Kationenaustausch der Tonminerale. I. Vergleich der Untersuchungs-methoden. Z. anorg. allgem. Chem. 297, 232-256.Google Scholar