Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T06:33:24.306Z Has data issue: false hasContentIssue false

Re-examination of the kinetics of the thermal dehydroxylation of kaolinite

Published online by Cambridge University Press:  09 July 2018

J. M. Criado
Affiliation:
Departamento de Quimica Inorganica, Facultad de Quimica de la Universidad de Sevilla y Departamento de Investigaciones Fisicas y Quimicas, Centro Coordinado del CSIC, Sevilla, Spain
A. Ortega
Affiliation:
Departamento de Quimica Inorganica, Facultad de Quimica de la Universidad de Sevilla y Departamento de Investigaciones Fisicas y Quimicas, Centro Coordinado del CSIC, Sevilla, Spain
C. Real
Affiliation:
Departamento de Quimica Inorganica, Facultad de Quimica de la Universidad de Sevilla y Departamento de Investigaciones Fisicas y Quimicas, Centro Coordinado del CSIC, Sevilla, Spain
E. Torres De Torres
Affiliation:
Departamento de Quimica Inorganica, Facultad de Quimica de la Universidad de Sevilla y Departamento de Investigaciones Fisicas y Quimicas, Centro Coordinado del CSIC, Sevilla, Spain

Abstract

The results obtained from this study of kaolinite dehydroxylation explain why different investigators have ascribed both first-order kinetics and a diffusion mechanism to this reaction. The fact that activation energies reported by these workers agree well, in spite of the different kinetics assumed when performing the calculations, is also explained. From a comparison of the results obtained by isothermal and non-isothermal methods it is concluded that, for reacted fractions, α, <0·6, kaolinite dehydroxylation is controlled by a diffusion process. A reaction mechanism explaining this behaviour is proposed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, E.B. (1954) Determination of specific heats and heats of reaction of clay minerals by thermal analysis. Silicates Ind. 19, 363373.Google Scholar
Achar, B.N.N., Brindley, G.W. & Sharp, J.H. (1966) Kinetics and mechanism of dehydroxylation processes, III, applications and limitations of dynamic methods. Proe. Int. Clay Conf. Jerusalem, I, 6773.Google Scholar
Brindley, G.W., Sharp, J.H., Patterson, J.H. & Narahari, B.N. (1967) Kinetics and mechanism of dehydroxylation processesses. I. Temperature and vapor pressure dependence of dehydroxylation of kaolinite. Am. Miner. 52, 201211.Google Scholar
Coats, A.W. & Redfern, J.P. (1964) Kinetic parameters from thermogravimetric data. Nature 201, 6669.Google Scholar
Criado, J.M., Morales, J., Ortega, A. & Rives-Arnau, V. (1980) Estudio del mecanismo de descomposición térmica de la caolinita. XVIII Reunión Bienal Burgos Libro H, 13-42.Google Scholar
Delmon, B. (1969) Introduction à la Cinétique Hétérogene. Ed. Technip, Paris.Google Scholar
Gallagher, K.J. (1965) The effect of particle size distribution on the kinetics of diffusion reactions in powders. Pp. 192203 in: Reactivity of Solids (Schwab, M., editor). American Elsevier Publishing Co. Inc., New York.Google Scholar
Holt, J.B., Culter, I.B. & Wadsworth, M.E. (1962) Rate of thermal dehydration of kaolinite in vacuum. J. Am. Ceram. Soc. 45, 133136.Google Scholar
Hancock, J.D. & Sharp, J.H. (1972) Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite and BaCO3 . J. Am. Ceram. Soc. 55, 7477.Google Scholar
Johnson, H.B. & Kessler, F. (1969) Kaolinite dehydroxylation kinetics. J. Am. Ceram. Soc. 52, 199204.Google Scholar
Kromer, H. (1972) Mineral composition and properties of two North Spanish kaolins from the region of Vivero (Galicia). Interceram 4, 259264.Google Scholar
Lahiri, A.K. (1980) The effect of particle size distribution on TG. Thermochim. Acta 40, 289295.Google Scholar
Murray, P. & White, J. (1955) Kinetics of thermal dehydration characteristics of the clay minerals. Trans. Brit. Ceram. Soc. 54, 137150.Google Scholar
Otero-Arean, C., Letellier, M., Gerstein, B.C. & Fripiat, J.J. (1982) Protonic structure of kaolinite during dehydroxylation studied by proton nuclear magnetic resonance. Proc. 7th Int. Clay Conf. Bologna & Pavia, 7385.CrossRefGoogle Scholar
Sharp, J.H., Brindley, G.W, & Achar, B.N.N. (1966) Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. 49, 379382.Google Scholar
Toussaint, F., Fripiat, J.J. & Gastuche, M.C. (1963) Dehydroxylation of kaolinite: I. J. Phys. Chem. 67, 2630.Google Scholar