Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:36:01.688Z Has data issue: false hasContentIssue false

Realistic molecular cluster models for exfoliated kaolinite

Published online by Cambridge University Press:  02 January 2018

Attila Táborosi
Affiliation:
Department of Environmental Engineering, Faculty of Engineering, University of Pannonia, PO Box 10, Veszprém, Hungary
Robert K. Szilagyi*
Affiliation:
Department of Chemistry and Biochemistry, Montana State University, Bozeman, USA
*
3Current address: Department of Analytical Chemistry, Faculty of Engineering, University of Pannonia, PO Box 10, Veszprém, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecular cluster models, developed for an exfoliated kaolinite, provide a structural description comparable to that of periodic slab models for a fraction of the computational cost. These models include both the octahedral and the tetrahedral sheets of kaolinite. The first-generation model (G1) contains the inner and outer coordination sphere of the Al- and Si-honeycombs as the preferred sites for adsorption of small organic molecules. Since no experimental information is available to date at the atomic level for exfoliated kaolinite, we carried out a systematic density functional theory evaluation for establishing the most reasonable coordinates of the ions and groups. The results of molecular cluster and periodic calculations were utilized for evaluating semi-empirical Hamiltonians on larger models. Using a PM7 Hamiltonian, the structure of cluster models containing 1 + 6 (second generation) and 1 + 6 + 12 (third generation) Al- and Si-honeycombs which are out of reach for ab initio calculations, were determined. These molecular slab models offer a structural platform for adsorption, intercalation and delamination studies.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Becke, A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Physical Review A, 38, 30983100.10.1103/PhysRevA.38.3098Google Scholar
Becke, A.D. (1993) Density-functional thermochemistry III. The role of exact exchange. Journal of Chemical Physics, 98, 56485652.10.1063/1.464913Google Scholar
Clark, T. & Stewart, J.J.P. (2011) MNDO-like semiempi-rical molecular orbital theory and its application to large systems. Pp. 259-286. Blackwell Science Publications, Oxford.Google Scholar
Cygan, R.T., Liang, J.J. & Kalinichev, A.G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 12551266.10.1021/jp0363287Google Scholar
Cygan, R.T. & Tazaki, K. (2014) Interactions of kaolin minerals in the environment. Elements, 10, 195200.10.2113/gselements.10.3.195Google Scholar
Dawley, M.M., Scott, A.M., Hill, E.C., Leszczynski, I. & Orlando, T.M. (2012) Adsorption of formamide on kaolinite surfaces: A combined infrared experimental and theoretical study. Journal of Physical Chemistry C, 116, 2398123991.10.1021/jp304529nCrossRefGoogle Scholar
Emami, F.S., Puddu, V., Berry, R.J., Varshney, V., Patwardhan, S.V., Perry, C.C. & Heinz, H. (2014) Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chemistry of Materials, 26, 26472658.10.1021/cm500365cGoogle Scholar
Frisch, M.J.T., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., lyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. (2009) Gaussian 09, Gaussian, Inc., Wallingford CT, USA.Google Scholar
Gardolinski, J. & Lagaly, G. (2005) Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination. Clay Minerals, 40, 547556.10.1180/0009855054040191Google Scholar
Gardolinski, J.E., Wypych, E. & Cantao, M.P. (2001) Exfoliation and hydration of kaolinite after intercalation with urea. Quimica Nova, 24, 761767.Google Scholar
Gates, W.P. (2013) X-ray absorption spectroscopy pp. 137-160 in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors), Developments in Clay Science, 5, Elsevier, Amsterdam.Google Scholar
Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 17871799.10.1002/jcc.20495CrossRefGoogle Scholar
Gualtieri, A.F., Moen, A. & Nicholson, D.G. (2000) XANES study of the local environment of iron in natural kaolinites. European Journal of Mineralogy, 12, 1723.10.1127/ejm/12/1/0017Google Scholar
Heinz, H., Lin, T.I., Mishra, R.K. & Emami, F.S. (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanos-tructures: The interface force field. Langmuir, 29, 17541765.10.1021/la3038846CrossRefGoogle ScholarPubMed
Heinz, H. & Suter, U.W. (2004) Atomic charges for classical simulations of polar systems. Journal of Physical Chemistry B, 108, 1834118352.10.1021/jp048142tGoogle Scholar
Horvath, E., Kristof, I. & Frost, R.L. (2010) Vibrational spectroscopy of intercalated kaolinites. Part I. Applied Spectroscopy Reviews, 45, 130147.10.1080/05704920903435862Google Scholar
Klamt, A. (2011) The COSMO and COSMO-RS solvation models. Wiley Interdisciplinary Reviews-Computational Molecular Science, 1, 699709.10.1002/wcms.56Google Scholar
Korth, M., Pitonak, M., Rezac, J. & Hobza, P. (2010) A transferable H-bonding correction for semiempirical quantum-chemical methods. Journal of Chemical Theory and Computation, 6, 344352.10.1021/ct900541nGoogle Scholar
Kudin, K.N. & Scuseria, G.E. (1998) A fast multipole algorithm for the efficient treatment of the coulomb problem in electronic structure calculations of periodic systems with gaussian orbitals. Chemical Physics Letters, 289, 611616.10.1016/S0009-2614(98)00468-0Google Scholar
Kudin, K.N. & Scuseria, G.E. (2000) Linear-scaling density-functional theory with gaussian orbitals and periodic boundary conditions: Efficient evaluation of energy and forces via the fast multipole method. Physical Review B, 61, 1644016453.10.1103/PhysRevB.61.16440CrossRefGoogle Scholar
Kudin, K.N., Scuseria, G.E. & Schlegel, H.B. (2001) A redundant internal coordinate algorithm for optimization of periodic systems. Journal of Chemical Physics, 114, 29192923.10.1063/1.1340578Google Scholar
Kuroda, Y., Ito, K., Itabashi, K. & Kuroda, K. (2011) One-step exfoliation of kaolinites and their transformation into nanoscrolls. Langmuir, 27, 20282035.10.1021/la1047134CrossRefGoogle ScholarPubMed
Lee, C.T., Yang, W.T. & Parr, R.G. (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Physical Review B, 37, 785789.10.1103/PhysRevB.37.785Google Scholar
Mercier, P.H.J. & Le Page, Y. (2011) Rational ab initio modeling for low energy hydrogen-bonded phy llo silicate polytypes. European Journal of Mineralogy, 23, 401407.10.1127/0935-1221/2011/0023-2092CrossRefGoogle Scholar
Perdew, J.P. & Wang, Y. (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Physical Review B, 45, 1324413249.10.1103/PhysRevB.45.13244CrossRefGoogle ScholarPubMed
Perdew, I.E., Chevary, I.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. & Fiolhais, C. (1992) Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 66716687.10.1103/PhysRevB.46.6671CrossRefGoogle ScholarPubMed
Perdew, I.E., Tao, J.M., Staroverov, V.N. & Scuseria, G.E. (2004) Meta-generalized gradient approximation: Explanation of a realistic non-empirical density functional. Journal of Chemical Physics, 120, 68986911.10.1063/1.1665298Google Scholar
Rezac, J., Fanfrlik, J., Salahub, D. & Hobza, P. (2009) Semi-empirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. Journal of Chemical Theory and Computation, 5, 17491760.10.1021/ct9000922Google Scholar
Schäfer, A., Horn, H. & Ahlrichs, R. (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. Journal of Chemical Physics, 97, 25712577.10.1063/1.463096Google Scholar
Schäfer, A., Huber, C. & Ahlrichs, R. (1994) Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. Journal of Chemical Physics, 100, 58295835.10.1063/1.467146Google Scholar
Shaw, S.A., Peak, D. & Hendry, M.J. (2009) Investigation of acidic dissolution of mixed clays between pH 1.0 and —3.0 using Si and Al X-ray absorption near edge structure. Geochimica Et Cosmochimica Acta, 73, 41514165.10.1016/j.gca.2009.04.004Google Scholar
Singh, B. & Gilkes, R.J. (1992) An electron-optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212229.10.1346/CCMN.1992.0400211CrossRefGoogle Scholar
Slater, J.C. (1951) A simplifaction of the Hartree-Fock method. Physical Review, 81, 385390.10.1103/PhysRev.81.385CrossRefGoogle Scholar
Smrcok, L., Tunega, D., Ramirez-Cuesta, A.-J. & Scholtzova, E. (2010) The combined inelastic neutron scattering and solid state dft study of hydrogen atoms dynamics in a highly ordered kaolinite. Physics and Chemistry of Minerals, 37, 571579.10.1007/s00269-010-0358-3CrossRefGoogle Scholar
Staroverov, V.N., Scuseria, G.E., Tao, I. & Perdew, J.P. (2004) Tests of a ladder of density functionals for bulk solids and surfaces. Physical Review B, 69, 075102.10.1103/PhysRevB.69.075102CrossRefGoogle Scholar
Staroverov, V.N., Scuseria, G.E., Tao, J.M. & Perdew, J.P. (2003) Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes. Journal of Chemical Physics, 119, 1212912137.10.1063/1.1626543Google Scholar
Stewart, J.J.P. (2007) Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, 11731213.10.1007/s00894-007-0233-4Google Scholar
Stewart, J.J.P. (2008) Application of the pm6 method to modeling the solid state. Journal of Molecular Modeling, 14, 499535.10.1007/s00894-008-0299-7Google Scholar
Stewart, J.J.P. (2012) Mopac2012., Stewart Computational Chemistry, Colorado Springs, CO, USA.Google Scholar
Stewart, J.J.P. (2013) Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re—optimization of parameters. Journal of Molecular Modeling, 19, 132.10.1007/s00894-012-1667-xCrossRefGoogle Scholar
Sun, D.W., Li, B., Li, Y.F., Yu, C., Zhang, B. & Fei, H.F. (2011) Characterization of exfoliated/delamination kaolinite. Materials Research Bulletin, 46, 101104.10.1016/j.materresbull.2010.09.031CrossRefGoogle Scholar
Táborosi, A., Kurdi, R. & Szilágyi, R.K. (2014) The positions of inner hydroxide groups and aluminium ions in exfoliated kaolinite as indicators of the external chemical environment. Physical Chemistry Chemical Physics, 16, 2583025839.10.1039/C4CP03566FGoogle Scholar
Teppen, B.J., Rasmussen, K., Bertsch, P.M., Miller, D.M. & Schafer, L. (1997) Molecular dynamics modelling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101, 15791587.10.1021/jp961577zGoogle Scholar
Tomasi, J., Cammi, R., Mennucci, B., Cappelli, C. & Corni, S. (2002) Molecular properties in solution described with a continuum solvation model. Physical Chemistry Chemical Physics, 4, 56975712.10.1039/b207281pGoogle Scholar
Tsunematsu, K. & Tateyama, H. (1999) Delamination of urea-kaolinite complex by using intercalation proce-dures. Journal of the American Ceramic Society, 82, 15891591.10.1111/j.1151-2916.1999.tb01963.xGoogle Scholar
Tunega, D., Bucko, T. & Zaoui, A. (2012) Assessment often DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. Journal of Chemical Physics, 137, Article No.: 114105.10.1063/1.4752196CrossRefGoogle Scholar
Valaskova, M., Rieder, M., Matejka, V., Capkova, P. & Sliva, A. (2007) Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates. Applied Clay Science, 35, 108118.10.1016/j.clay.2006.07.001Google Scholar
White, C.E., Provis, J.L., Riley, D.P., Kearley, G.J. & van Deventer, J.S.J. (2009) What is the structure of kaolinite? Reconciling theory and experiment. Journal of Physical Chemistry B, 113, 67566765.10.1021/jp810448tGoogle Scholar