Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T19:53:49.010Z Has data issue: false hasContentIssue false

Quantification of hematite from the visible diffuse reflectance spectrum: effects of aluminium substitution and grain morphology

Published online by Cambridge University Press:  09 July 2018

Q. S. Liu
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P.R. China
J. Torrent*
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba, Spain
V. Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Edificio C4, Campus de Rabanales, 14071 Córdoba, Spain
Z. Q. Duan
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, P.R. China Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, P.R. China
J. Bloemendal
Affiliation:
Department of Geography, University of Liverpool, Roxby Building, Liverpool L69 3BX, UK
*

Abstract

Hematite exists ubiquitously in soils and sediments, and is commonly aluminium (Al)-substituted. This study investigated systematically the effects of Al substitution on the visible diffuse reflectance spectrum (DRS) of hematite by using several sets of synthetic samples. We found that the position and amplitude of the characteristic absorption band of hematite (estimated from the first- and second-order derivative curves of the Kubelka-Munk remission function spectrum derived from the DRS) was significantly affected by the degree of Al substitution as well as by sample grain morphology. Therefore, there are ambiguities in quantifying the degree of Al substitution and the mass concentration of hematite using DRS. Nevertheless, if hematite forms under similar environmental conditions, it is possible to establish a transfer function between the DRS parameters and hematite concentration as discussed here for a Chinese loess-palaeosol sequence.

Type
Research Papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balsam, W., Ji, J.F. & Chen, J. (2004) Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters, 223, 335348.Google Scholar
Barrón, V., Rendón, J.L., Torrent, J. & Serna CJ. (1984) Relation of infrared, crystallochemical, and morphological properties of Al-substituted hematites. Clays and Clay Minerals, 32, 475479.CrossRefGoogle Scholar
Barrón, V., Herruzo, M. & Torrent, J. (1988) Phosphate adsorption by aluminous hematites of different shapes. Soil Science Society of America Journal, 52, 647651.Google Scholar
Bloemendal, J., Liu, X.M., Sun, Y.B. & Li, N.N. (2008) An assessment of magnetic and geochemical indicators of weathering and pedogenesis at two contrasting sites on the Chinese Loess plateau. Palaeogeogr ap hy, Palaeoclimatolo gy, Palaeoecology, 257, 152168.CrossRefGoogle Scholar
Carter-Stiglitz, B., Banerjee, S.K., Gourlan, A. & Oches, E.A. (2006) A multi-proxy study of Argentina loess: Marine oxygen isotope stage 4 and 5 environmental record from pedogenic hematite. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 4562.CrossRefGoogle Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C., Morris, R.V., Pearl, J.C., Pearson, R., Roush, T.L., Ruff, S.W. & Smith, M.D. (2000) Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer. Journal of Geophysical Research, 105, 96239642.CrossRefGoogle Scholar
Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L. & Malin, M.C. (2001) Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. Journal of Geophysical Research, 106, 2387323885.Google Scholar
Colombo, C., Barrón, V. & Torrent, J. (1994) Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochimica et Cosmochimica Ada, 58, 1261 — 1269.Google Scholar
da Costa, G.M., Van San, E., de Grave, E., Vandenberghe, R.E., Barrón, V. & Datas, L. (2002) Al hematites prepared by homogeneous precipitation of oxinates: material characterization and determination of the Morin transition. Physics and Chemistry of Minerals, 29, 122131.Google Scholar
Deaton, B.C. & Balsam, W.L. (1991) Visible spectroscopy — a rapid method for determining hematite and goethite concentration in geologic materials. Journal of Sedimentary Petrology, 61, 628632.Google Scholar
de Grave, E., Bowen, L.H. & Weed, S.B. (1982) Mossbauer study of aluminum-substituted hematites. Journal of Magnetism and Magnetic Materials, 27, 98108.Google Scholar
Dunlop, D.J. & Kletetschka, G. (2001) Multidomain hematite: a source of planetary magnetic anomalies. Geophysical Research Letters, 28, 33453348.Google Scholar
Eyre, J.K. & Dickson, D.P.E. (1995) Mössbauer spectroscopy analysis of iron-containing minerals in the Chinese loess. Journal of Geophysical Research, 100, 1792517930.Google Scholar
Ji, J.F., Balsam, W. & Chen, J. (2001) Mineralogic and climatic interpretations of the Luochuan Loess Section (China) based on diffuse reflectance spectrophotometry. Quaternary Research, 56, 2330.Google Scholar
Kletetschka, G., Wasilewski, P.J. & Taylor, P.T. (2000) Unique thermoremanent magnetization of multidomain sized hematite: implications for magnetic anomalies. Earth and Planetary Science Letters, 176, 469479.Google Scholar
Kosmas, C.S., Curi, N., Bryant, R.B. & Franzmeier, D.P. (1984) Characterization of iron oxide minerals by second-derivative visible spectroscopy. Soil Science Society of America Journal, 48, 401405.Google Scholar
Kosmas, C.S., Franzmeier, D.P. & Schulze, D.G. (1986) Relationship among derivative spectroscopy, color, crystallite dimensions, and Al substitution of synthetic goethites and hematites. Clays and Clay Minerals, 34, 625634.CrossRefGoogle Scholar
Larrasoaña, J.C., Roberts, A.P., Rohling, E.J., Winklhofer, M. & Wehausen, R. (2003) Three million years of monsoon variability over the northern Sahara. Climate Dynamics, 21, 689698.Google Scholar
Larrasoaña, J.C., Roberts, A.P., Hayes, A., Rohling, E.J. & Wehausen, R. (2006) Detecting missing beats in the Mediterranean climate rhythm from magnetic identification of oxidized sapropels (Ocean Drilling Program Leg 160). Physics of the Earth and Planetary Interiors, 156, 283293.Google Scholar
Liu, Q.S., Banerjee, S.K., Jackson, M.J., Zhu, R. & Pan, Y. (2002) A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background. Geophysical Research Letters, 29, 12, doi:10.1029/2002GL014699.Google Scholar
Liu, Q.S., Banerjee, S.K., Jackson, M.J., Chen, F., Pan, Y. & Zhu, R. (2004) Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aeolian coarse-grained magnetite. Geophysical Journal International, 156, 267274.CrossRefGoogle Scholar
Liu, Q.S., Bloemendal, J., Torrent, J. & Deng, C.L. (2006) Contrasting behavior of hematite and goethite within paleosol S5 of the Luochuan profile, Chinese Loess Plateau. Geophysical Research Letters, 33, L20301, doi:10.1029/2006GL027172.CrossRefGoogle Scholar
Liu, Q.S., Roberts, A.P., Torrent, J., Horng, C.-S. & Larrasoana, J.C. (2007) What do the HIRM and Sratio really measure in environmental magnetism. Geochemistry Geophysics Geosystems, 8, Q09011, doi:10.1029/2007GC001717.Google Scholar
Liu, Q.S., Barrón, V., Torrent, J., Qin, H.F. & Yu, Y.J. (2010) Magnetism of the micro-sized hematite explained. Physics of the Earth and Planetary Interiors, 183, 387397.Google Scholar
Maher, B.A. & Dennis, P.F. (2001) Evidence against dust-mediated control of glacial-interglacial changes in atmosphere CO2. Nature, 411, 176180.Google Scholar
Morris, R.V., Ming, D.W., Graff, T.G., Arvidson, R.E., Bell, J.F. III., Squyres, S.W., Mertzman, S.A., Gruener, J.E., Golden, D.C., Le, L. & Robinson, G.A. (2005) Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 168178.CrossRefGoogle Scholar
Pomies, M.P., Morin, G. & Vignaud, C. (1998) XRD study of the goethite-hematite transformation; application to the identification of heated prehistoric pigments. European Journal of Solid State Inorganic Chemistry, 35, 925.Google Scholar
Raymo, M.E. & Nisancioglu, K.H. (2003) The 41 Kyr world: Milankovitch's other unsolved mystery. Paleoceanography, 18, 1011, doi:10.1029/2002PA000791.CrossRefGoogle Scholar
Roberts, A.P., Liu, Q.S., Rowan, C.J., Chang, L., Carvallo, C., Torrent, J. & Horng, C.-S. (2006) Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. Journal of Geophysical Research, 111, B12S35, doi:10.1029/2006JB004715.Google Scholar
Scheinost, A.C., Chavernas, A., Barrón, V. & Torrent, J. (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46, 528536.Google Scholar
Schwertmann, U. (1987) Some properties of soil and synthetic iron oxides. Pp. 203250 in: Iron in Soil and Clay minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). NATO Advanced Study Institute. Series 217, Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
Schwertmann, U. (1989) Occurrence and formation of iron oxides in the various paleoenvironments. Pp. 267308 in: Iron in Soil and Clay minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). NATO Advanced Study Institute. Series 217, Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
Schwertmann, U. (1993) Relations between iron oxides, soil color, and soil formation. Pp. 5169 in: Soil Color (Bigham, J.M. & Ciolkosz, E.J., editors). SSSA Special Publication, Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Sherman, D.M. & Waite, T.M. (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70, 12621269.Google Scholar
Thompson, R. & Oldfield, F. (1986) Environmental Magnetism. Allen and Unwin, St. Leonards, N.S.W., Australia.Google Scholar
Torrent, J. & Barrón, V. (2003) The visible diffuse reflectance spectrum in relation to the color and crystal properties of hematite. Clays and Clay Minerals, 51, 309317.CrossRefGoogle Scholar
Torrent, J. & Barrón, V. (2008) Diffuse reflectance spectroscopy. Pp. 367385 in: Methods of Soil Analysis. Part 5. Mineralogical Methods (Ulery, A.L. & Drees, L.R., editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Torrent, J., Schwertmann, U. & Schulze, D.G. (1980) Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 25, 191208.Google Scholar
Torrent, J., Schwertmann, U., Fechter, H. & Alferez, F. (1983) Quantitative relationships between soil color and hematite content. Soil Science, 136, 354358.CrossRefGoogle Scholar
Torrent, J., Liu, Q., Bloemendal, J. & Barrón, V. (2007) Magnetic enhancement and iron oxides in the upper Luochuan loess-paleosol sequence, Chinese Loess Plateau. Soil Science Soc iety of America Journal, 71, 15701578.Google Scholar
Van San, E., de Grave, E., Vanderberghe, R.E., Desseyn, H.O., Datas, L., Barrón, V. & Rousset, A. (2001) Study of Al-substituted hematites, prepared from thermal treatment of lepidocrocite. Physics and Chemistry of Minerals, 28, 488497.Google Scholar
Yamazaki, T. & Ioka, N. (1997) Environmental rockmagnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene. Paleoceanography, 12, 111124.Google Scholar