Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T13:39:28.210Z Has data issue: false hasContentIssue false

Production of ceramic bodies from Tunisian Cretaceous clays

Published online by Cambridge University Press:  09 July 2018

M. Hachani
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM. BP273, 8020 Soliman Tunisia
W. Hajjaji*
Affiliation:
Geobiotec, Geosciences Dept., University of Aveiro, 3810-193 Aveiro, Portugal Ceramics and Glass Engineering Dept. and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
B. Moussi
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM. BP273, 8020 Soliman Tunisia
M. Medhioub
Affiliation:
Faculty of Science Sfax, 3018, Sfax-Tunisia
F. Rocha
Affiliation:
Geobiotec, Geosciences Dept., University of Aveiro, 3810-193 Aveiro, Portugal
J. A. Labrincha
Affiliation:
Ceramics and Glass Engineering Dept. and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
F. Jamoussi
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM. BP273, 8020 Soliman Tunisia
*

Abstract

The aim of this research was to assess the potential application of the Late Cretaceous levels as raw material for the production of ceramic tiles. Mineralogical, chemical and grain size distribution studies were carried out on four clays sampled at different sites in the Tunisian Central Atlas. Clays are mainly composed of phyllosilicates, usually illite and kaolinite. Quartz, feldspars and dolomite were also detected.

Tiles were prepared by pressing clay bodies at 250 bar and then firing at different temperatures following industrial conditions as closely as possible. Thermal analysis showed the influence of mineralogical composition and grain size distribution on the material behaviour during firing. The physical properties of fired tiles were obtained from specific tests in accordance with international standards (ISO), i.e. the firing shrinkage, water absorption, apparent density and flexural strength. The development of physical properties indicates an optimal firing range between 1050–1150°C. Results demonstrate the potential of Late Cretaceous materials as raw materials for the production of ceramic tiles.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aras, A. (2004) The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Applied Clay Science, 24, 257–269.Google Scholar
Burollet, P.F. (1956) Contribution à l’étude stratigraphique de la Tunisie centrale, Annales des Mines et de la Géologie, Tunis, no. 18, 350 pp.Google Scholar
Cultrone, G., Sebastián, E., Elert, K., De la Torre, M.J., Cazalla, O. & Rodríguez-Navarro, C. (2004) Influence of mineralogy and firing temperature on the porosity of bricks. Journal of European Ceramic Society, 24, 547–564.Google Scholar
Dondi, M., Ercolani, G., Fabbri, B. & Marsigli, M. (1998). An approach to the chemistry of pyroxenes formed during the firing of Ca-rich silicate ceramics. Clay Minerals 33, 443–452.Google Scholar
Dondi, M., Guarini, G., Liga, P., Palomba, M. & Raimondo, M. (2001) Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (western Sardinia), Italy. Applied Clay Science, 18, 145–155.CrossRefGoogle Scholar
Ferrari, S. & Gualtieri, A.F. (2006) The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 73–81.Google Scholar
Fiori, C., Fabbri, B., Donati, G. & Venturi, I. (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Applied Clay Science, 4, 461–473.CrossRefGoogle Scholar
Hachani, M. (2011) Valorisation céramique de quelques argiles du Crétacé inférieur : Formations Bouhedma (Atlas Centro-méridional) et Douiret (Plateforme Saharienne). PhD Thesis, Université Carthage, 177 pp.Google Scholar
Hachani, M., Jeridi, K., Alouani, R., Medhioub, M., Hajjaji, W. & Jamoussi, F. (2008) Argiles tunisiennes: Propriétés céramiques et transformations de phases. L’industrie Céramique et Verrière, 1018, 26–30.Google Scholar
Hajjaji, W., Jeridi, K., Seabra, M.P, Rocha, F., Labrincha, J.A. & Jamoussi, F. (2009) Composition and properties of glass obtained from Early Cretaceous Sidi Aich sands (Central Tunisia). Ceramics International, 35, 3229–3234.CrossRefGoogle Scholar
ISO 10545-3 (1995) Ceramic tiles. Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density. Edition 1.Google Scholar
ISO 10545-4 (2004) Ceramic tiles. Part 4: Determination of modulus of rupture and breaking strength. Edition 2.Google Scholar
ISO 13006 (1998) Ceramic tiles. Definitions, classification, characteristics and marking. Edition 1.Google Scholar
Jouenne, C.A. (1990) Traité de Céramiques et Matériaux Minéraux. Editions Septima, Paris, 657 pp.Google Scholar
Kacim, S. & Hajjaji, M. (2003) Firing transformations of a carbonatic clay from the High-Atlas, Morocco. Clay Minerals, 38, 361–365.Google Scholar
King, A.G. (2002) Ceramic Technology and Processing. Noyes Publication, New York, 512 pp.Google Scholar
Konta, J. (1980) Properties of Ceramic Raw Materials. Ceramic Monographs – Handbook of Ceramics. Verlag Schmidt, Freiburg, 1–32.Google Scholar
Lee, W.E., Souza, G.P, McConville, C.J., Tarvornpanich, T. & Iqbal, Y. (2008) Mullite formation in clays and clay-derived vitreous ceramics. Journal of the European Ceramic Society, 28, 465–471.Google Scholar
M’Rabet, A. (1981) Stratigraphie, Sédimentation et Diagenèse des Séries du Crétacé Inférieur de Tunisie Centrale. DSc Thesis, Université de Paris Sud Orsay-France, 540 pp.Google Scholar
M’Rabet, A. (1987) Stratigraphie sédimentaire et diagenè se carbonatée des séries du Crétacé inférieur de la Tunisie centrale. Annales des Mines et de la Géologie, 30, 1–412.Google Scholar
M’Rabet, A., Mejri, F., Burollet, P.F., Memmi, L. & Chandoul, H. (1995) Recueil des coupes-types de Tunisie. Enterprise Tunisienne d’Activities Petrolières (ETAP), Mémoire, Tunis, no. 8B, 123 pp.Google Scholar
Peters, T. & Iberg, R. (1978) Mineralogical changes during firing of calcium-rich brick clays. American Ceramic Society Bulletin, 57, 503–509.Google Scholar
Riccardi, M.P., Messiga, B., Duminuco, P. (1999) An approach to the dynamics of clay firing. Applied Clay Science, 15, 393–409.Google Scholar
Rodriguez-Navarro, C., Cultrone, G., Sanchez-Navas, A. & Sebastian, E. (2003) TEM study of mullite growth after muscovite breakdown. American Mineralogist, 88, 713–724.Google Scholar
Santos, P.S. (1997) Ciência e Tenologia de Argilas, 1, 3rd edition. Edgard Blücher Ltda, S. Paulo.Google Scholar
Segadaes, A.M., Carvalho, M.A. & Acchar, W. (2005) Using marble and granite rejects to enhance the processing of clay products. Applied Clay Science, 30, 42–52.Google Scholar
Sousa, S.J.G. & Holanda, J.N.F. (2005) Development of red wall tiles by the dry process using Brazilian raw materials. Ceramics International, 31, 215–222.Google Scholar