Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T15:56:59.199Z Has data issue: false hasContentIssue false

Pressure Induced Disorder in Kaolinite

Published online by Cambridge University Press:  09 July 2018

A. La Iglesia*
Affiliation:
lnstituto de Geologia Económica del CSIC, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

Changes caused by pressures between 0 and 20 K bar on two samples of kaolinite have been studied. Increased pressure causes the samples to lose crystallinity, shown by a decrease in the Hinckley, Lietard and reference intensity ratio indices, as well as by the crystallite size measured from the 001 reflection. Results from DTA and solid state NMR show slight or no differences between the compressed and natural samples. Nonetheless, thermogravimetry reveals that the pressure treatment lowers the temperature at which dehydroxylation begins, but, unlike the grinding process, pressure does not alter the OH content of the samples. As a result of the increase in pressure, the IR spectra of the samples show a gradual increase in the intensity of the band at 1104 cm -1 with respect to 1112 cm -1. An increase in intensity can also be observed in the band at 936 cm ~ with respect to the band at 912 cm -1. Examination by electron microscopy reveals the existence of a large number of defects such as fractures, bends and deformations of the sheets, etc.; these are responsible for the decrease in crystallinity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Étude des propriétés crisallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. Mineral. 105, 439155.Google Scholar
Davis, B.L. & Smith, D.K. (1981) Tables of experimental reference intensity ratios. Powder Diffraction 3,205208. Google Scholar
Davis, B.L., Smith, D.K. & FIolomany, M.A. (1989) Tables of experimental reference intensity ratios. Table no. 2. Powder Diffraction 4, 201205.CrossRefGoogle Scholar
De Luca, S. & Slaughter, M. (1985) Existence of multiple kaolinite phases and their relationship to disorder in kaolin minerals. Am. Miner. 70, 149158.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-363 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society, London.CrossRefGoogle Scholar
Galan Heurtos, E. (1973-75) Caolines Españoles: geología, mineralogía y genesis. Tesis Doctoral, Ed. Soc.Espanola de Ceram, y Vidrio, Spain.Google Scholar
Gonzalez Garcia, F., Ruiz, Abrio M.T. & Gonzalez Rodriguez, M. (1991) Effects of dry grinding on two kaolins of different degree of crystallinity. Clay Miner. 26, 549565.CrossRefGoogle Scholar
Gregg, S.J., Hill, K.F. & Parker, T.V. (1954) Grinding of kaolinite. J. App. Chem. 4, 666674.CrossRefGoogle Scholar
Haase, T. & Winter, K. (1959) L’influence du broyage sur Ies propiétés ceramiqués du kaolin. Bull. Soc. Franc. Ceram. 44, 1319.Google Scholar
Hinckley, D.N. (1963) Variability of “crystallinity” values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Clays Clay Miner. 11, 229235.CrossRefGoogle Scholar
Hubbard, C.A., Evans, E.H. & Smith, D.K. (1976) The reference intensity ratio I/Ic, for computer simulated powder patterns. J. Appl. Cryst. 9, 169174.CrossRefGoogle Scholar
Juhasz, Z. (1980) Mechano-chemical activation of kaolin minerals. Acta Mineralogica-Petrographica, Suplementum Proc. 10th Kaolin Sym. Budapest, 121145.Google Scholar
Kodama, M. & Jaakkimainen, M. (1982) A comparative study of selective chemical dissolution methods for separating noncrystalline components produced by grinding of silicates. Proc. Int. Clay Conf. Bologna-Pavia, 399-110.Google Scholar
Kodama, H., Kotlyar, L.S. & Ripmeester, J.A. (1989) Quantification of crystalline and noncrystalline material in ground kaolinite by X-ray powder diffraction, infrared, solid-state nuclear magnetic resonance, and chemical- dissolution analyses. Clays Clay Miner. 37, 364370.CrossRefGoogle Scholar
Laws, W.D. & Page, J.B. (1946) Changes produced in kaolin by grinding. Soil Sci 62, 319336.CrossRefGoogle Scholar
Leguey, S. & Doval, M. (1987) Los caolines de Poveda de la Sierra (Guadalajara) y la Planta de Caobar s.a. Sixth Meet. European Clay Groups, Sevilla, Guidebook for Excursions, 139179.Google Scholar
Lietard, O. (1977) Contribution a I’elude des propprietes physicochimiques, cristallographiques et rnorphologiques des kaolins. These Doc. Sci. Phys. Nancy, France.Google Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimmer, A.R. (1980) Structural studies of silicates by solid state high-resolution 29Si NMR. J. Am. Chem. Soc. 102, 48891893.CrossRefGoogle Scholar
Miller, J.G. & Oulton, T.D. (1970) Prototropy in kaolinite during percussive grinding. Clays Clays Miner. 18, 313323.CrossRefGoogle Scholar
Patterson, S.H. & Murray, H.H. (1975) “Clays”. Pp. 519-585 in: Industrial Minerals and Rocks, 4th ed. (S.J. Lefond, editor). AIME, New York.Google Scholar
Perkins, A.T. (1948) Kaolin and treated kaolin and their reactions. Soil Sci. 65, 185192.CrossRefGoogle Scholar
Range, K.J., Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf. Tokyo, 313.Google Scholar
Takahashi, H. (1959) Effects of dry grinding on kaolin minerals. Clays Clay Miner. 6, 279291.CrossRefGoogle Scholar
Tettenhorst, R.T. & Corbato, C.E. (1986) Properties of a sized and ground kaolinite. Clay Miner. 21, 971976.CrossRefGoogle Scholar
Van Olphen, H. & Fripiat, J.J. (1979) Data Book for Clay Materials and Other Non-Metallic Minerals. Pergamon Press, Oxford.Google Scholar
Wiegmann, J. & Kranz, G. (1957) Observations of the changes in kaolinite by grinding. Silikattechik 8, 520523.Google Scholar