Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T15:37:19.844Z Has data issue: false hasContentIssue false

Preparation and characterization of kaolinite nanostructures: reaction pathways, morphology and structural order

Published online by Cambridge University Press:  02 January 2018

Balázs Zsirka
Affiliation:
Institute of Environmental Engineering, University of Pannonia, H-8201 Veszprém, P.O.Box 158, Hungary
Erzsébet Horváth*
Affiliation:
Institute of Environmental Engineering, University of Pannonia, H-8201 Veszprém, P.O.Box 158, Hungary
Éva Makó
Affiliation:
Institute of Materials Engineering, University of Pannonia, H-8201 Veszprém, P.O.Box 158, Hungary
Róbert Kurdi
Affiliation:
Institute of Environmental Engineering, University of Pannonia, H-8201 Veszprém, P.O.Box 158, Hungary
János Kristóf
Affiliation:
Department of Analytical Chemistry, University of Pannonia, H-8201 Veszprém, P.O.Box 158, Hungary
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay-based nanostructures were prepared from kaolinites of varying structural order by two different methods. In the first method the kaolinite-urea precursor, obtained by dry grinding, was intercalated further with triethanolamine and the tetraalkylammonium salt was synthesized in the interlamellar space. Exfoliation was achieved by the use of sodium polyacrylate (PAS). In the second method, the kaolinite-potassium acetate (kaolinite-KAc) precursor, obtained via two different methods, was intercalated further with ethylene glycol (EG) and then n-hexylamine (HA). Intercalation with EG was also achieved by heating either directly or with microwaves. The morphology that results depends on the method of precursor preparation, the method of heat treatment and the degree of structural order of the original clay. Higher structural order facilitates the formation of a tubular morphology, while mechanical treatment and microwave agitation may result in broken tubes. Molecular mechanical (MM) calculations showed that organo-complexes may be exfoliated to a d value of 10–11 Å.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Araújo, F.R., Baptista, J.G., Marcal, L., Ciuffia, K.J., Nassara, E.J., Calefi, P.S., Vicente, M.A., Trujillano, R., Rives, V., Gilc, A., Korilic, S. & de Fariaa, E.H. (2014) Versatile heterogeneous dipicolinate complexes grafted into kaolinite: Catalytic oxidation of hydrocarbons and degradation of dyes. Catalysis Today, 227, 105115.10.1016/j.cattod.2013.09.031CrossRefGoogle Scholar
Brigatti, M.F., Galán, E. & Theng, B.K.G. (2006). Structures and mineralogy of clay minerals. Pp. 19-24 and 26-30 in: Handbook of Clay Science. Advances in Clay Science, 1st edition (Bergaya F., Theng B.K.G. & Lagaly G., editors). Elsevier, Amsterdam.Google Scholar
Bizaia, N., De Faria, E.H., Ricci, G.P., Calefi, P.S., Nassar, E.I., Castro, K.A.D.F., Nakagaki, S., Ciuffi, K.J., Trujillano, R., Vicente, M.A., Gil, A. & Korili, S.A. (2009) Porphyrin-kaolinite as efficient catalyst for oxidation reactions. ACS Applied Materials and Interfaces, 1, 26672678.10.1021/am900556bCrossRefGoogle ScholarPubMed
Cramer, J.C. (2004) Essentials of Computational Chemistry, Theories and Models, 2nd edition, pp. 6-10, John Wiley & Sons Ltd., Chichester, UK.Google Scholar
De Faria, E.H., Ricci, G.P., Marçal, L., Nassar, E.J., Vicente, M.A., Trujillano, R., Gil, A., Korili, S.A., Ciuffi, K.J. & Calefi, P.S. (2012) Green and selective oxidation reactions catalyzed by kaolinite covalently grafted with Fe(III) pyridine-carboxylate complexes. Catalysis Today, 187, 135149.10.1016/j.cattod.2011.11.029CrossRefGoogle Scholar
Dedzo, G.K. & Detellier, C. (2014) Intercalation of two phenolic acids in an ionic liquid-kaolinite nanohybrid material and desorption studies. Applied Clay Science, 97-98, 153159.10.1016/j.clay.2014.04.038CrossRefGoogle Scholar
Frost, R.L., Kristof, L., Horváth, E. & Kloprogge, J.T. (1999a) Deintercalation of dimethylsulphoxide intercalated kaolinites - a DTA/TGA and Raman spectro-scopic study. Thermochimica Acta, 327, 155166.10.1016/S0040-6031(98)00605-4CrossRefGoogle Scholar
Frost, R.L., Kristof, L., Horváth, E. & Kloprogge, J.T. (1999b) Molecular structure of dimethyl sulphoxide in DMSO-intercalated kaolinites at 298 and 77 K. Journal of Physical Chemistry A, 103, 96549660.10.1021/jp991763fCrossRefGoogle Scholar
Frost, R.L., Kristof, L., Horváth, E. & Kloprogge, J.T. (2000a) Kaolinite hydroxyls in dimethylsulphoxide intercalated kaolinites at 77K — a Raman spectroscopic study. Clay Minerals, 35, 443454.10.1180/000985500546792CrossRefGoogle Scholar
Frost, R.L., Kristof, L., Horváth, E. & Kloprogge, J.T. (2000b) Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K. Journal of Colloid and Interface Science, 226, 318327.10.1006/jcis.2000.6807CrossRefGoogle Scholar
Frost, R.L., Kristof, L., Horváth, E. & Kloprogge IT (2001) Raman spectroscopy of potassium acetate-intercalated kaolinites over the temperature range 25 to 300°C. Journal of Raman Spectroscopy, 32, 271277.10.1002/jrs.694CrossRefGoogle Scholar
Frost, R.L., Kristof, L., Kloprogge, J.T. & Horváth, E. (2000c) Rehydration of potassium acetate-intercalated kaolinite at 298 K. Langmuir, 16, 54025408.10.1021/la9915522CrossRefGoogle Scholar
Frost, R.L., Kristof, I.,Makó, É. & Horváth, E. (2003) A DRIFT spectroscopic study of potassium acetate intercalated mechanochemically activated kaolinite. Spectrochimica Acta — Part A: Molecular and Biomolecular Spectroscopy, 59, 11831194.10.1016/S1386-1425(02)00317-7CrossRefGoogle ScholarPubMed
Gardolinski, J.E.F.C. & Lagaly, G. (2005a) Grafted organic derivatives of kaolinite: I. Synthesis, chemical and rheological characterization. Clay Minerals, 40, 537546.10.1180/0009855054040190CrossRefGoogle Scholar
Gardolinski, J.E.F.C. & Lagaly, G. (2005b) Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination. Clay Minerals, 40, 547556.10.1180/0009855054040191CrossRefGoogle Scholar
Halgren, T.A. (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490641.10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P3.0.CO;2-P>CrossRefGoogle Scholar
Horváth, E., Kristof, I., Kurdi, R., Makó, É. & Khunová, V. (2011) Study of urea intercalation into halloysite by thermoanalytical and spectroscopic techniques. Journal of Thermal Analysis and Calorimetry, 105, 5359.10.1007/s10973-011-1522-9CrossRefGoogle Scholar
Horváth, E., Kristof, I., Frost, R.L., Jakab, E., Makó, E. & Vágvölgyi, V. (2005) Identification of superactive centers in thermally treated formamide-intercalated kaolinite. Journal of Colloid and Interface Science, 289, 132138.10.1016/j.jcis.2005.03.059CrossRefGoogle ScholarPubMed
Janek, M., Emmerich, K., Heissler, S. & Nüesch, R. (2007) Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite. Chemistry of Materials, 19, 684693.10.1021/cm061481+CrossRefGoogle Scholar
Khunova, V., Kristof, I., Kelnar, L. & Dybal, J. (2013) The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites. eXPRESS Polymer Letters, 7, 47179.10.3144/expresspolymlett.2013.43CrossRefGoogle Scholar
Kristóf, J., Frost, R.L., Kloprogge, J.T., Horvath, E. & Gábor, M. (1999) Thermal behaviour of kaolinite intercalated with formamide, dimethylsulphoxide and hydrazine. Journal of Thermal Analysis and Calorimetry, 56, 885891.10.1023/A:1010139113778CrossRefGoogle Scholar
Kristof, I., Frost, R.L., Horvath, E., Kocsis, L. & Inczedy, J. (1998) Thermoanalytical investigations on intercalated kaolinites. Journal of Thermal Analysis, 53, 467475.10.1023/A:1010189324654CrossRefGoogle Scholar
Kristóf, J., Tóth, M., Gábor, M., Szabó, P. & Frost, R.L. (1997) Study of the structure and thermal behaviour of intercalated kaolinites. Journal of Thermal Analysis, 49, 14411448.10.1007/BF01983703CrossRefGoogle Scholar
Letaief, S. & Detellier, C. (2008) Ionic liquids-kaolinite nanostructured materials. Intercalation of pyrrolidi-nium salts. Clays and Clay Minerals, 56, 8289.10.1346/CCMN.2008.0560107CrossRefGoogle Scholar
Letaief, S. & Detellier, C. (2009a) Clay-polymer nano-composite material from the delamination of kaolinite in the presence of sodium polyacrylate. Langmuir, 25, 1097510979.10.1021/la901196fCrossRefGoogle Scholar
Letaief, S. & Detellier, C. (2009b) Functionalization of the interlayer surfaces of kaolinite by alkylammonium groups from ionic liquids. Clays and Clay Minerals, 57, 638648.10.1346/CCMN.2009.0570510CrossRefGoogle Scholar
Letaief, S., Leclercq, J., Liu, Y. & Detellier, C. (2011) Single kaolinite nanometer layers prepared by an in situ polymerization-exfoliation process in the presence of ionic liquids. Langmuir, 27, 1524815254.10.1021/la203492mCrossRefGoogle Scholar
Makó, E., Kristof, J., Horváth, E., Vágvölgyi, V. (2009) Kaolinite-urea complexes obtained by mechanochem-ical and aqueous suspension techniques - A comparative study. Journal of Colloid and Interface Science, 330, 367373.10.1016/j.jcis.2008.10.054CrossRefGoogle ScholarPubMed
Makó, É., Kovács, A., Horváth, E. & Kristóf, J. (2014) Kaolinite-potassium acetate and halloysite-potassium acetate complexes prepared by mechanochemical, solution and homogenization techniques: A comparative study. Clay Minerals, 49, 457471.10.1180/claymin.2014.049.3.08CrossRefGoogle Scholar
Martens, W.N., Frost, R.L., Kristof, I. & Horváth, E. (2002) Modification of kaolinite surfaces through intercalation with deuterated dimethyl sulphoxide. Journal of Physical Chemistry B, 106, 41624171.10.1021/jp0130113CrossRefGoogle Scholar
Matusik, J. & Bajda, T. (2013) Immobilization and reduction of hexavalent chromium in the interlayer space of positively charged kaolinites. Journal of Colloid and Interface Science, 398, 7481.10.1016/j.jcis.2013.02.015CrossRefGoogle ScholarPubMed
Matusik, J. & Matykowska, L. (2014) Behaviour of kaolinite intercalation compounds with selected ammonium salts in aqueous chromate and arsenate solutions. Journal of Molecular Structure, 1071, 5259.10.1016/j.molstruc.2014.04.063CrossRefGoogle Scholar
Matusik, J., Stodolak, E. & Bahranowski, K. (2011) Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51, 102109.10.1016/j.clay.2010.11.010CrossRefGoogle Scholar
Nakagaki, S., Machado, G.S., Halma, M., dos Santos Marangon, A.A., de Freitas Castro, K.A.D., Mattoso, N. & Wypych, F. (2006) Immobilization of iron porphyr-ins in tubular kaolinite obtained by an intercalation/ delamination procedure. Journal of Catalysis, 242, 110117.10.1016/j.jcat.2006.06.003CrossRefGoogle Scholar
Papp, S., Patakfalvi, R. & Dékány, I. (2008) Metal nanoparticle formation on layer silicate lamellae. Colloid and Polymer Science, 286, 314.10.1007/s00396-007-1728-3CrossRefGoogle Scholar
Papp, S., Patakfalvi, R. & Dékány, I. (2004) Synthesis and characterization of noble metal nanoparticles/kaolinite composites. Progress in Colloid and Polymer Science, 125, 8895.Google Scholar
Patakfalvi, R. & Dékány, I. (2004) Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes. Applied Clay Science, 25, 149159.10.1016/j.clay.2003.08.007CrossRefGoogle Scholar
Rehim, M.H.A., Youssef, A.M. & Essawy, H.A. (2010) Hybridization of kaolinite by consecutive inter-calation: Preparation and characterization of hyperbranched poly(amidoamine)-kaolinite nano-composites. Materials Chemistry and Physics, 119, 546552.10.1016/j.matchemphys.2009.10.012CrossRefGoogle Scholar
Táborosi, A., Kurdi, R. & Szilágyi, R.K. (2014a) Adsorption and intercalation of small molecules on kaolinite from molecular modelling studies. Hungarian Journal of Industry and Chemistry Veszprém, 42, 1923.Google Scholar
Táborosi, A., Kurdi, R. & Szilágyi, R.K. (2014b) The positions of inner hydroxide groups and aluminium ions in exfoliated kaolinite as indicators for external chemical environment. Physical Chemistry Chemical Physics, 16, 258302583.10.1039/C4CP03566FCrossRefGoogle ScholarPubMed
Tao, Q., Su, L., Frost, R.L., He, H. & Theng, B.K.G. (2014) Effect of functionalized kaolinite on the curing kinetics of cycloaliphatic epoxy/anhydride system. Applied Clay Science, 95, 317322.10.1016/j.clay.2014.04.034CrossRefGoogle Scholar
Tonlé, I.K., Letaief, S., Ngameni, E., Walcarius, A. & Detellier, C. (2011) Square wave voltammetric determination of lead(II) ions using a carbon paste electrode modified by a thiol-functionalized kaolinite. Electroanalysis, 23, 245252.10.1002/elan.201000467CrossRefGoogle Scholar
Tunney, J.J. & Detellier, C. (1994) Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite. Clays and Clay Minerals, 42, 552560.10.1346/CCMN.1994.0420506CrossRefGoogle Scholar
Tunney, J.J. & Detellier, C. (1996) Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates. Chemistry of Materials, 8, 927935.10.1021/cm9505299CrossRefGoogle Scholar
Tunney, J.J. & Detellier, C. (1997) Interlamellar amino functionalization of kaolinite. Canadian Journal of Chemistry, 75, 17661772.10.1139/v97-610CrossRefGoogle Scholar
Tunney, J.J. (1996) Chemically modified kaolinite. Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite. Journal of Materials Chemistry, 6, 16791685.10.1039/jm9960601679CrossRefGoogle Scholar
Viani, A., Gualtieri, A. & Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966975.10.2138/am-2002-0720CrossRefGoogle Scholar
Wiewióra, A. & Brindley, G.W. (1969) Potassium acetate intercalation in kaolinites and its removal: effect of material characteristics. Pp: 723-733 in Proceedings of the International Clay Conference Tokyo (L. Heller, editor). Israel University Press, Jerusalem.Google Scholar