Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T01:13:08.097Z Has data issue: false hasContentIssue false

Plastic behaviour of clay materials for the manufacture of fast-drying red ceramics

Published online by Cambridge University Press:  30 March 2023

Vitor de Souza Nandi
Affiliation:
Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Avenida Universitária, 1105–88806-000, Criciúma (SC), Brazil
Alexandre Zaccaron
Affiliation:
Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Avenida Universitária, 1105–88806-000, Criciúma (SC), Brazil
Fabiano Raupp-Pereira
Affiliation:
Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Avenida Universitária, 1105–88806-000, Criciúma (SC), Brazil
Sabrina Arcaro
Affiliation:
Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Avenida Universitária, 1105–88806-000, Criciúma (SC), Brazil
Adriano Michael Bernardin
Affiliation:
Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Avenida Universitária, 1105–88806-000, Criciúma (SC), Brazil
Oscar Rubem Klegues Montedo*
Affiliation:
Universidade do Extremo Sul Catarinense (UNESC), Programa de Pós-graduação em Ciência e Engenharia de Materiais (PPGCEM), Avenida Universitária, 1105–88806-000, Criciúma (SC), Brazil
*
*Corresponding author: Rubem Klegues Montedo, Email: [email protected]

Abstract

Fast drying (~60 min) is useful for optimizing production processes by increasing productivity and reducing costs and environmental impacts, especially in red ceramic industries in Brazil. However, suitable clays are necessary and, currently, studies focused on the plastic behaviour of clays with compositions suitable for extrusion, especially for fast drying, are scarce. Therefore, in this study, three different clays from the same mineral deposit were studied for producing clay-based structural products via fast drying. The clays were characterized according to their chemical, mineralogical and thermal properties, particle size, cation-exchange capacity, specific surface area and open pore volume distribution. Ten formulations were developed using a simplex-centroid mixture design of experiments and their plasticity index (PI) values were determined. The response surfaces of the formulations were evaluated according to their PI, while the formation characteristics were determined according to their extrusion workability factor values. Formulations F5 (50.0 wt.% yellow clay and 50.0 wt.% green clay) and F8 (66.6 wt.% yellow clay, 16.7 wt.% grey clay and 16.7 wt.% green clay; PI = 15.5–16.6%) displayed optimal extrusion properties, followed by formulations F7 (33.3 wt.% yellow clay, 33.3 wt.% grey clay and 33.3 wt.% green clay) and F10 (16.7 wt.% yellow clay, 16.7 wt.% grey clay and 66.6 wt.% green clay; PI = 13.8–14.2%), which are within acceptable extrusion index values. Thus, the chosen formulations have significant potential for use in the manufacture of fast-drying red ceramics.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: M. Dondi

References

ABNT (2016) NBR 7181: Soil – Granulometric Analysis. Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 3 pp.Google Scholar
Achik, M., Benmoussa, H., Oulmekki, A., Ijjaali, M., Moudden, N.E. et al. (2021) Evaluation of technological properties of fired clay bricks containing pyrrhotite ash. Construction & Building Materials, 269, 121312.CrossRefGoogle Scholar
AFNOR (1998) NF P94-068 – Sols: reconnaissance et essais – Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux − Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache. French Association of Normalization, Saint-Denis, France, 8 pp.Google Scholar
Aghayev, T. & Küçükuysal, C. (2018) Ceramic properties of Uşak clay in comparison with Ukrainian clay. Clay Minerals, 53, 549562.CrossRefGoogle Scholar
Ammann, L., Bergaya, F. & Lagaly, G. (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Minerals, 40, 441453.CrossRefGoogle Scholar
Andrade, F.A., Al-Qureshi, H.A. & Hotza, D. (2011) Measuring the plasticity of clays: a review. Applied Clay Science, 51, 17.CrossRefGoogle Scholar
Arab, P.B., Araújo, T.P. & Pejon, O.J. (2015) Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Applied Clay Science, 114, 133140.CrossRefGoogle Scholar
Baghdad, A., Bouazi, R., Bouftouha, Y., Hatert, F. & Fagel, N. (2019) Characteristics and firing behaviour of the under-Numidian clay deposits from the Jijel region (northeast Algeria): potential use in the ceramics industry. Clay Minerals, 54, 325337.CrossRefGoogle Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Cabral Junior, M., Tanno, L.C., Sintoni, A., Motta, J.F.M. & Coelho, J.M. (2012) A indústria de cerâmica vermelha e o suprimento mineral no Brasil: desafios para o Aprimoramento da competitividade. Cerâmica Industrial, 17, 3642.CrossRefGoogle Scholar
Casagrande, A. (1932) Research on the Atterberg limits of soils. Public Roads, 13, 121146.Google Scholar
Casagrande, A. (1948) Classification and identification of soils. Transactions of the American Society of Civil Engineers, 113, 901991.CrossRefGoogle Scholar
Cavalcante, P.M.T., Dondi, M., Ercolani, G., Guarini, G., Melandri, C., Raimondo, M. & Rocha e Almendra, E. (2004) The influence of microstructure on the performance of white porcelain stoneware. Ceramics International, 30, 953963.CrossRefGoogle Scholar
Conserva, L.R.S., Melchiades, F.G., Nastri, S., Boschi, A.O., Dondi, M., Guarini, G. et al. (2017) Pyroplastic deformation of porcelain stoneware tiles: wet vs. dry processing. Journal of the European Ceramic Society, 37, 333342.CrossRefGoogle Scholar
Crozetta, J.R., Nandi, V.S., Rosso, F., Zaccaron, A. & Niero, D.F. (2016) Influência de tamanhos de partículas na plasticidade e retração de secagem das argilas. Cerâmica Industrial, 21, 2129.CrossRefGoogle Scholar
Deboucha, S. & Hashim, R. (2011) A review on bricks and stabilized compressed earth blocks. Scientific Research Essays, 6, 499506.Google Scholar
De Jong, E. (1999) Comparison of three methods of measuring surface area of soils. Canadian Journal of Soil Science, 79, 345351.CrossRefGoogle Scholar
De Kimpe, C.R., Laverdiere, M.R. & Martel, Y.A. (1979) Surface area and exchange capacity of clay in relation to the mineralogical composition of gleysolic soils. Canadian Journal of Soil Science, 59, 341347.CrossRefGoogle Scholar
Doménech, V., Sánchez, E., Sanz, V., García, J. & Ginés, F. (1994) Assessing the plasticity of ceramic masses by determining indentation force. Pp. 5969 in: III World Congress on Ceramic Tile Quality. General Lectures and Open Papers II. Castellón, Spain: Qualicer.Google Scholar
Dondi, M., Ercolani, G., Melandri, C., Mingazzini, C. & Marsigli, M. (1999) The chemical composition of porcelain stoneware tiles and its influence on microstructure and mechanical properties. InterCeram: International Ceramic Review, 48, 7583.Google Scholar
Dondi, M., Raimondo, M. & Zanelli, C. (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Applied Clay Science, 96, 91109.CrossRefGoogle Scholar
Eliche-Quesada, D., Sandalio-Pérez, J.A., Martínez-Martínez, S., Pérez-Villarejo, L. & Sánchez-Soto, P.J. (2018) Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceramics International, 44, 44004412.CrossRefGoogle Scholar
Gippini, E. (1969) Contribution à l’ètude des proprietés de molage des argiles et des mèlanges optimaux de matières premières. L'Industrie Céramique, 619, 423435.Google Scholar
Grohmann, F. (1972) Superfície específica do solo de unidades de mapeamento do estado de São Paulo: I – Estudo de perfis com horizonte B textural e horizonte B latossólico. Bragantia, 31, 145165.CrossRefGoogle Scholar
Harrati, A., Manni, A., Hassani, F.O., Sdiri, A., Kalakhi, S.E., Bouari, A. et al. (2020) Potentiality of new dark clay-rich materials for porous ceramic applications in Ouled Sidi Ali Ben Youssef Area (coastal Meseta, Morocco). Boletín de la Sociedad Española de Cerámica y Vidrio, 61, 130145.CrossRefGoogle Scholar
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering, 1st edition. Prentice Hall, Hoboken, NJ, USA, 733 pp.Google Scholar
Inocente, J.M., Nandi, V.S., Rosso, F., de Oliveira, A. & Zaccaron, A. (2017) Study for vitreous waste recovery in the formulation of heavy clay ceramics. Materials Science & Engineering International Journal Research, 1, 5660.Google Scholar
Jemaï, M.B.M., Karoui-Yaakoub, N., Sdiri, A., Salah, I.B., Azouzi, R. & Duplay, J. (2015) Late Cretaceous and Palaeocene clays of the northern Tunisia: potential use for manufacturing clay products. Arabian Journal of Geoscience, 8, 1113511148.CrossRefGoogle Scholar
Júnior M., Cabral, Motta, J.F.M., Almeida, A.S. & Tanno, L.C. (2008) Argila para cerâmica vermelha. Pp. 747770 in: Rochas e Minerais Industriais no Brasil: usos e especificações (Luz, A.B. & Lins, F.A.F., editors). CETEM/MCTI, Rio de Janeiro, Brazil.Google Scholar
Karakan, E. (2022a) Comparative analysis of Atterberg limits, liquidity index, flow index and undrained shear strength behavior in binary clay mixtures. Applied Sciences, 12, 8616.CrossRefGoogle Scholar
Karakan, E. (2022b) Relationships among plasticity clay fraction and activity of clay sand mixtures. Arabian Journal of Geosciences, 15, 334.CrossRefGoogle Scholar
Karakan, E. & Demir, S. (2018) Effect of fines content and plasticity on undrained shear strength of quartz–clay mixtures. Arabian Journal of Geosciences, 11, 743.CrossRefGoogle Scholar
Karakan, E. & Demir, S. (2020) Observations and findings on mechanical and plasticity behavior of sand–clay mixtures. Arabian Journal of Geosciences, 13, 983.CrossRefGoogle Scholar
Karakan, E., Shimobe, S. & Sezer, A. (2020) Effect of clay fraction and mineralogy on fall cone results of clay–sand mixtures. Engineering Geology, 279, 105887.CrossRefGoogle Scholar
Kazmi, S.M.S., Abbas, S., Saleem, M.A., Munir, M.J. & Khitab, A. (2016) Manufacturing of sustainable clay bricks: utilization of waste sugarcane bagasse and rice husk ashes. Construction & Building Materials, 120, 2941.CrossRefGoogle Scholar
Ketelaars, A.A.J., Pel, L., Coumans, W.J. & Kerkhof, P.J.A.M. (1995) Drying kinetics: a comparison of diffusion coefficients from moisture concentration profiles and drying curves. Chemical Engineering Science, 50, 11871191.CrossRefGoogle Scholar
Mabrouk S., Ben & Belghith, A.A. (1995) Numerical simulation of the drying of a derfomable material: evolution of the diffusion coefficient, Drying Technology, 13, 17891805.CrossRefGoogle Scholar
Marsigli, M. & Dondi, M. (1997) Plasticitá delle argille Italiane per laterizi e previsione del loro comportamento in foggiatura. L'Industria dei Laterizi, 46, 214222.Google Scholar
Modesto, C.O. & Bernardin, A.M. (2008) Determination of clay plasticity: Indentation method versus Pfefferkorn method. Applied Clay Science, 40, 1519.CrossRefGoogle Scholar
Monsif, M., Zerouale, A., Idrissi Kandri, N., Mozzon, M., Sgarbossa, P., Zorzi, F. et al. (2019) Chemical–physical and mineralogical characterization of ceramic raw materials from Moroccan northern regions: intriguing resources for industrial applications. Applied Clay Science, 182, 105274.CrossRefGoogle Scholar
Monteiro, S.N. & Vieira, C.M.F. (2004) Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 27, 229234.CrossRefGoogle Scholar
Moon, V. (2016) Halloysite behaving badly: geomechanics and slope behaviour of halloysite-rich soils. Clay Minerals, 51, 517528.CrossRefGoogle Scholar
Moreno-Maroto, J.M. & Alonso-Azcárate, J. (2018) What is clay? A new definition of ‘clay’ based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 5763.CrossRefGoogle Scholar
Muñoz, V.P., Morales, O.M.P., Letelier, G.V. & Mendívil, G.M.A. (2016) Fired clay bricks made by adding wastes: assessment of the impact on physical, mechanical and thermal properties. Construction & Building Materials, 125, 241252.CrossRefGoogle Scholar
Nandi, V.S., Zaccaron, A., Fernandes, P., Dagostin, J.P. & Bernardin, A.M. (2014) Adição de vidro reciclado de Lâmpadas na fabricação de cerâmica vermelha. Cerâmica Industrial, 19, 2932.CrossRefGoogle Scholar
Nicolas, M.F., Vlasova, M., Aguilar, P.A.M., Kakazey, M., Cano, M.M.C., Matus, R.A. & Puig, T.P. (2020) Development of an energy-saving technology for sintering of bricks from high-siliceous clay by the plastic molding method. Construction & Building Materials, 242, 118142.CrossRefGoogle Scholar
Nield, D.A. & Simmons, C.T. (2019) A brief introduction to convection in porous media. Transport in Porous Media, 130, 237250.CrossRefGoogle Scholar
Nieto, F., Abad, I. & Azañón, J.M. (2008) Smectite quantification in sediments and soils by thermogravimetric analyses. Applied Clay Science, 38, 288296.CrossRefGoogle Scholar
Oliveira, A.A. (2011) Tecnologia em Cerâmica. Editora Lara, Criciúma, Brazil, 176 pp.Google Scholar
Pardo, F., Jordan, M.M. & Montero, M.A. (2018) Ceramic behaviour of clays in central Chile. Applied Clay Science, 157, 158164.CrossRefGoogle Scholar
Petersen, L.W., Moldrup, P., Jacobsen, O.H. & Rolston, D.E. (1996) Relations between specific surface area and soil physical and chemical properties. Soil Science, 161, 921.CrossRefGoogle Scholar
Schaefer, C.E.G.R., Fabris, J.D. & Ker, J.C. (2008) Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals, 43, 137154.CrossRefGoogle Scholar
Semiz, B. (2017) Characteristics of clay-rich raw materials for ceramic applications in Denizli region (western Anatolia). Applied Clay Science, 137, 8393.CrossRefGoogle Scholar
Shakir, A.A. & Mohammed, A.A. (2013) Manufacturing of bricks in the past, in the present and in the future: a state of the art review. International Journal of Advances in Applied Science, 2, 145156.Google Scholar
Spagnoli, G. & Feinendegen, M. (2017) Relationship between measured plastic limit and plastic limit estimated from undrained shear strength, water content ratio and liquidity index. Clay Minerals, 52, 509519.CrossRefGoogle Scholar
Stokes, G.G. (1852) On the Composition and Resolution of Streams of Polarized Light from Different Sources. Proceedings of the Cambridge Philosophical Society: Mathematical and physical sciences, Transactions of the Cambridge Philosophical Society, 9th edition. Cambridge University Press, Cambridge, UK, 399 pp.Google Scholar
Strazzera, B., Dondi, M. & Marsigli, M. (1997) Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247266.CrossRefGoogle Scholar
Tan, K.H. (2005) Soil Sampling, Preparation, and Analysis. CRC Press, Boca Raton, FL, USA, 672 pp.CrossRefGoogle Scholar
Toei, R. (1985) Giants of drying. Drying Technology, 3, 114.CrossRefGoogle Scholar
Toei, R., Okazaki, M. & Tamon, H. (1994) Conventional basic design for convection or conduction dryers. Drying Technology, 12, 5997.CrossRefGoogle Scholar
Ukwatta, A., Mohajerani, A., Setunge, S. & Eshtiaghi, N. (2015) Possible use of biosolids in fired-clay bricks. Construction & Building Materials, 91, 8693.CrossRefGoogle Scholar
Vasconcellos, A.M., Sousa, S.R., Moura, S.R., Silva, N.J.B., Gomes, S.W.R. & Barbosa, L.A.G. (2019) Drying of industrial hollow ceramic brick: a numerical analysis using CFD. Defect and Diffusion Forum, 391, 4853.Google Scholar
Winkler, H.G.F. (1954) Bedeutung der Korngrößenverteilung und des Mineralbestandes von Tonen für die Herstellung grobkeramischer Erzeugnisse. Berichte Deutche Keramics Gesellschaft, 31, 337343.Google Scholar
Zaccaron, A., Nandi, V.S. & Bernardin, A.M. (2021) Fast drying for the manufacturing of clay ceramics using natural clays. Journal of Building Engineering, 33, 101877.CrossRefGoogle Scholar
Zaccaron, A., Nandi, V.S., Dal Bó, M., Arcaro, S. & Bernardin, A.M. (2022) The behavior of different clays subjected to a fast-drying cycle for traditional ceramic manufacturing. Journal of King Saud University – Engineering Sciences (in press).CrossRefGoogle Scholar
Zanden, V.A.J.J. (1996) Modelling and simulating simultaneous liquid and vapour transport in partially saturated porous materials. Pp. 157177 in: Mathematical Modelling and Numerical Techniques in Drying Technology. Marcel Dekker, Inc., New York, NY, USA.Google Scholar
Zanelli, C., Raimondo, M., Guarini, G. & Dondi, M. (2011) The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. Journal of Non-Crystalline Solids, 357, 32513260.CrossRefGoogle Scholar
Supplementary material: File

Nandi et al. supplementary material

Nandi et al. supplementary material

Download Nandi et al. supplementary material(File)
File 34.3 KB