Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:24:08.288Z Has data issue: false hasContentIssue false

Physicochemical relationships during a KCl-bentonite hydrothermal reaction

Published online by Cambridge University Press:  09 July 2018

J. Linares
Affiliation:
Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1, 18008, Granada, Spain
F. Huertas
Affiliation:
Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1, 18008, Granada, Spain
E. Caballero
Affiliation:
Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1, 18008, Granada, Spain
C. Jimenez de Cisneros
Affiliation:
Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1, 18008, Granada, Spain

Abstract

A dioctahedral bentonite was treated hydrothermally with KCI solutions (0.025-1 M) at different temperatures (60-200°C) and times (1-360 days) to evaluate its use as a barrier for radioactive waste disposal. Equations relating adsorbed K on smectite with initial and equilibrium K concentrations in solution, temperature and time have been obtained. These equations are useful for modelling the influence and behaviour of these variables and contribute to the performance assessment calculations for radioactive waste repositories. Likewise, the thermodynamic parameters of the K adsorption process have been calculated. Other relationships, including silica in solution and pH, are also shown.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biggar, J.W. & Cheung, M.W. (1973) Adsorption of picloram on Panoche, Ephrata and Palouse soils. A thermodynamic approach to the adsorption mechanism. Soil Sci. Soc. Am. Proc. 37, 863868.Google Scholar
Brookins, D.G. (1984) Engineered backfills and canisters. Pp. 39–52 in: Geochemical Aspects of Radioactive Waste Disposal, Springer-Verlag.Google Scholar
Byalko, A.V. (1993) Disposals: concepts and options. Pp. 41–72 in: Nuclear Waste Disposal: Geophysical SaJety, CRC Press.Google Scholar
Cary, L.W., de Jong, B.H.W.S. & Dibble, W.E., Jr. (1982) A 29Si NMR study of silica species in dilute aqueous solution. Geochim. Cosmochim. Acta, 46, 13171320.Google Scholar
Cooley, W.W. & Lohnes, P.R. (1971) Multivariate Data Analysis. John Wiley & Sons, New York.Google Scholar
Crerar, D.A., Axtmann, E.V. & Axtmann, R.C. (1981) Growth and ripening of silica polymers in aqueous solutions. Geochim. Cosmochim. Acta, 45, 12591266.Google Scholar
Cuadros, J. & Linares, J. (1996) Experimental kinetic study of the smectite-to-illite transformation. Geochim. Cosmochim. Acta, 60, 439–453.Google Scholar
Dios, G., Romero, E. & Sanchez, F. (1990) Adsorption of cyanazine on peat and montmorillonite clay surfaces. Soil ScL 150, 836843.Google Scholar
Dios, G., Romero, E. & Sanchez, F. (1992) Carbendazim adsorption on montmorillonite, peat and soils. J. Soil Sci. 43, 99111.Google Scholar
Fu, Y., Hansen, R.L.S. & Bartell, F.E. (1948) Thermodynamics of absorption from solutions. I. J. Phys. Chem. 52, 374386.CrossRefGoogle Scholar
Garrels, R.M. & Tardy, Y. (1982) Born-Haber cycles for interlayer cations of micas. Proc. lnt. Clay Conf Bologna-Pavia, 423-440.Google Scholar
Güven, N. (1990) Longevity of bentonite as buffer material in a nuclear-waste repository. Eng. Geol. 28, 233248.CrossRefGoogle Scholar
Huertas, F.J., Cuadros, J. & Linares, J. (1995) Modelling of potassium exchange in a natural, polyionic montmorillonite under hydrothermal conditions. AppL Geochem. 10, 347355.Google Scholar
Johnston, R.M. (1983) The conversion of smectite to illite in hydrothermal systems: a literature review. Atomic Energy of Canada Limited. Publication AECL-7792.Google Scholar
McClosky, W.B. & Bayer, D.E. (1987) Thermodynamics of fluoridone adsorption and desorption on three California soils. Soil Sci. Soc. Am. J. 51, 605612.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffhaction and the Identification and Analysis of Clay Minerals. Oxford Univ. Press, 202-240.Google Scholar
Moreale, A. & van Bladel, R. (1979) Soil interactions of herbicide-derivated aniline residues: a thermodynamic approach. Soil Sci. 127, 19.Google Scholar
Page, A.L. (editor) (1982) Methods of Soil Analysis. Part. 2. Chemical and Microbiological Properties. Amer. Soc. Agron. (U.S.A.), 550 pp.Google Scholar
Shapiro, L. (1975) Rapid analysis of silicate, carbonate and phosphate rocks. US Geol. Surv. Bull. 1401.Google Scholar
Sparks, D.L. (1987) Kinetics of soil chemical process. Soil Sci. Am. Inc. S. Pub. 61-73.Google Scholar
Sposito, D.L. (1981) The Thermodynamics of Soil Solutions. Oxford, Clarendon Press, New York.Google Scholar
Sposito, G. (1984) The SurJace Chemistry of Soil. Oxford Univ. Press. New York.Google Scholar
Williams, L. & Crerar, D.A. (1985) Silica diagenesis, II. General mechanisms. J. Sed. Pet. 55, 312–321.Google Scholar