Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:33:11.680Z Has data issue: false hasContentIssue false

Particle-size distribution, cation exchange capacity and charge density of deferrated montmorillonites

Published online by Cambridge University Press:  09 July 2018

M. S. Stul
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Leuven (Heverlee), Belgium
L. Van Leemput
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Leuven (Heverlee), Belgium

Abstract

Different montmorillonites (Otay, Chambers, Marnia, Camp Berteau, Moosburg, Greek White, Wyoming bentonite were deferrated with a dithionite/citrate solution; iron sulphide by-products were eliminated with an HCl washing and citrates with an H2O2 oxidation. The smaller CEC after deferration could not be assigned to either (i) the occurrence of a positive correlation between CEC and particle sizes smaller than 0.2 µm or (ii) to the mean charge density of these sub-fractions. All sub-fractions had a heterogeneous interlayer cation density distribution.

Resume

Resume

Différentes montmorillonites (Otay, Chambers, Marnia, Camp Berteau, Moosburg, Greek White, Wyoming bentonite) étaient déferrées par une solution de dithionite, les sulfites de fer étaient éliminés par un lavage d'HCl et les citrates par une oxidation de H2O2. La plus petite CEC après déferrement ne peut pas être assignée (i) en l'occurrence d'une correlation positive entre CEC et dimensions des particules plus petites que 0.2 µm (ii) à la densité de charge moyenne de ces subfractions. Toutes ces subfractions ont une distribution de densité hétérogène des cation interfeuillets.

Kurzreferat

Kurzreferat

Verschiedene Montmorillonite (Otay, Chambers, Marnia, Camp Berteau, Moosburg, Greek White, Wyoming Bentonit) wurden mit einer Dithionit/Citrat-Lösung von Eisenverbindungen gereinigt. Die als Nebenprodukt entstandenen Eisensulfide wurden mit einem HCl-Waschgang und die Citrate durch H2O2-Oxidation entfernt. Die geringere Kationenaustauschkapazität nach der Fe-oxid-Entfernung konnte weder auf (a) die positive Beziehung zwischen Kationenaustauschkapazität und der Teilchengröße <0.2 µm, noch (b) auf die Hauptladungsdichte dieser Unterfraktionen zurückgeführt werden. Alle dieser Unterfraktionen besaßen eine heterogene Zwischenschichtkationen-Dichteverteilung.

Resumen

Resumen

Diferentes montmorillonitas (Otay, Chambers, Marnia, Camp Berteau, Moosburg, Greek White, Wyoming), fueron tratadas para extraer el hierro estructural, con una solución ditionito/citrato, y el sulfuro de hierro que se obtiene como subproducto eliminado con un lavado con ClH y citratos y una oxidación con H2O2. La pequeña capacidad de cambio encontrada después de la extracción del hierro, no deberia ser asignada ni (i) a la existencia de una correlación positiva entre la c.c. y la distribución de tamaño de partícula de la fracción <0.2 µm ni (ii) a la densidad de carga media de esas subfracciones. Todas las subfracciones tienen una distribución heterogénea de densidad de carga interlaminar.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chhabra, R., Pleysier, J. & Cremers, A. (1976) The measurement of the cation exchange capacity and exchangeable cations in soils: a new method. Proc. 5th Int. Clay Conf., Mexico City, 439449.Google Scholar
De Coninck, F., Herbillon, A., Tavernier, R. & Fripiat, J.J. (1968) Weathering of clay minerals and formation of amorphous material during the degradation of a Bt horizon and podzolisation in Belgium. Trans. 9th Int. Cong. Soil Sci. 4, 353365.Google Scholar
Eeckman, J.P. & Laudelout, H (1960) Dosage du fer et de l'aluminium échangeable dans les minéraux argileux et dans les sols. Plant and Soil 1, 6874.Google Scholar
Eeckman, J.P. & Laudelout, H. (1961) Chemical stability of hydrogen-montmorillonite suspensions. Kolloid-Zeitschrift 178, 99107.CrossRefGoogle Scholar
Fahn, R. (1973) Die Gewinnung von Bentonieten in Bayern. Erzmetall 26, 425428.Google Scholar
Frey, E. & Lagaly, G. (1978) Selective coagulation and mixed-layer formation from sodium smectite solutions. Proc. 6th Int. Clay Conf., Oxford, 131140.Google Scholar
Grim, R.E. & Güven, N. (1978) Bentonites. Developments in Sedimentology 24, Elsevier, Netherlands.Google Scholar
Kittrick, J.A. & Hope, E.W. (1963) A procedure for the particle size separation of soils for X-ray diffraction analysis. Soil Sci. 96, 319325.Google Scholar
Krishna Murti, G.S.R., Moharir, A.V. & Sarma, V.A. (1970) Spectrophotometric determination of iron with orthophenantroline. Microchem. J. 15, 585589.CrossRefGoogle Scholar
Lagaly, G. & Weiss, A. (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen—IV. Anordnung von n-Alkylammoniumionen bei neidrig geladenen Schichtsilikaten. Kolloid Z.u.Z. Polymere 243, 4855.CrossRefGoogle Scholar
Lagaly, G. & Weiss, A. (1976) The layer charge of smectite layer silicates. Proc. 5th Int. Clay Conf, Mexico City, 157172.Google Scholar
Maes, A., Felix, R. & Cremers, A. (1981) Unpublished results.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.Google Scholar
Mitchell, B.D. & Mackenzie, R.C. (1954) Removal of free iron oxide from clays. Soil Sci. 77, 173184.Google Scholar
Roth, C.B., Jackson, M.L., Lotse, E.G. & Syers, J.K. (1968) Ferrous-ferric ratio and CEC changes on deferration of weathered micaceous vermiculite. Israel J. Chem. 6, 261273.CrossRefGoogle Scholar
Roth, C.B., Jackson, M.L. & Syers, J.K. (1969) Deferration effect on structural ferrous-ferric iron ratio and CEC of vermiculites and soils. Clays Clay Miner. 17,253264.CrossRefGoogle Scholar
Schwertmann, U. (1959) Die fraktionierte Extraktion der freien Eisenoxyde in Böden, ihre mineralogischen Formen und ihre Entstehungsweisen. Pflanzenenernahr. Dung. Bodenk. 24, 194204.CrossRefGoogle Scholar
Schwertmann, U. (1979) Dissolution methods. Pp. 163176 in. Data Handbook for Clay Materials and Other Non-Metallic Minerals (Van Olphen, H. & Fripiat, J.J., editors) Pergamon Press.Google Scholar
Stul, M.S. & Mortier, W.J. (1974) The heterogeneity of the charge density in montmorillonites. Clays Clay Miner. 22, 391396.Google Scholar
Rengasamy, P., Van Assche, J.B. & Uytterhoeven, J.B. (1976) Particle size of Wyoming bentonite and its relation to the cation exchange capacity and the homogeneity of the charge density. J. Chem. Soc, Faraday Trans. I, 72, 376381.CrossRefGoogle Scholar
Veniale, F. & Pace, S. (1970) Influence du traitement par le dithionite de sodium sur les hydroxydes libres d'une smectite. Bull. GroupeFr. Argiles 22, 127137.Google Scholar