Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:27:07.576Z Has data issue: false hasContentIssue false

Overview of the clay mineralogy studies presented at the ‘Clays in natural and engineered barriers for radioactive waste confinement’ meeting, Montpellier, October 2012

Published online by Cambridge University Press:  09 July 2018

P. Landais
Affiliation:
French National Agency for Radioactive Waste Management, 1/7 Rue Jean Monnet, 92290 Châtenay-Malabry cedex, France
R. Dohrmann*
Affiliation:
Landesamt für Bergbau, Energie und Geologie (LBEG), Stilleweg 2, D-30655 Hannover, Germany Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, Germany
S. Kaufhold
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, Germany
*
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present special issue of Clay Minerals contains 19 full papers of scientific studies presented at the 5th conference on “Clays in natural and engineered barriers for radioactive waste confinement” held at Montpellier 2012. Since 2002, ANDRA, the French National Radioactive Waste Management Agency, developed this conference into the most important event for all kinds of scientists from all over the world dealing with the disposal of highly and longlived radioactive waste (HLRW). With these conferences, ANDRA contributed significantly to the outstanding scientific level of European research in this field. Therefore, Clay Minerals is happy to be able to provide the present compilation of recent HLRW disposal research articles in clay mineralogy. The 19 papers published in this special Montpellier 2012 issue were classified according to different areas within the field of HLRW disposal research.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2013 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Footnotes

Present address: BRGM, 3 avenue Claude Guillemin, BP 36009, 45060 Orléans cedex 2, France

References

Aertsens, M., Maes, N., Van Ravestyn, L. & Brassinnes, S. (2013) Overview of radionuclide migration experiments in the HADES Underground Research Facility at Mol (Belgium). Clay Minerals, 48, 153–166.10.1180/claymin.2013.048.2.01Google Scholar
Alexander, W.R., Milodowski, A.E., Pitty, A.F., Hardie, S.M.L., Kemp, S.J., Rushton, J.C., Siathas, A., Siathas, A., MacKenzie, A.B., Korkeakoski, P., Norris, S., Sellin, P. & Rigas, M. (2013) Bentonite reactivity in alkaline solutions: interim results of the Cyprus Natural Analogue Project (CNAP). Clay Minerals, 48, 235–249.10.1180/claymin.2013.048.2.06Google Scholar
Dohrmann, R., Olsson, S., Kaufhold, S. & Sellin, P. (2013) Mineralogical investigations of the first package of the alternative buffer material test – II. Exchangeable cation population rearrangement. Clay Minerals, 48, 215–233.10.1180/claymin.2013.048.2.05Google Scholar
Heikola, T., Kumpulainen, S., Vuorinen, U., Kiviranta, L. & Korkeakoski, P. (2013) Influence of alkaline (pH 8.3–12.0) and saline solutions on chemical, miner-alogical and physical properties of two different bentonites. Clay Minerals, 48, 309–329.10.1180/claymin.2013.048.2.12Google Scholar
Ishii, T., Yahagi, R., Owada, H., Kobayashi, I., Takazawa, M., Yamaguchi, K., Takayama, Y., Tsurumi, S. & Iizuka, A. (2013) Coupled chemical-hydraulicmechanical modelling of long-term alteration of bentonite. Clay Minerals, 48, 331–341.10.1180/claymin.2013.048.2.13CrossRefGoogle Scholar
Itälä, A., Järvinen, J. & Muurinen, (2013) CO2 effect on the pH of compacted bentonite buffer on the laboratory scale. Clay Minerals, 48, 277–284.10.1180/claymin.2013.048.2.09Google Scholar
Kaufhold, S., Dohrmann, R., Sandén, T., Sellin, P. & Svensson (2013) Mineralogical investigations of the first package of the alternative buffer material test – I. Alteration of bentonites. Clay Minerals, 48, 199–213.10.1180/claymin.2013.048.2.04CrossRefGoogle Scholar
Matusewicz, M., Pirkkalainen, K., Liljeström, V., Suuronen, J.-P., Root, A., Muurinen, A., Serimaa, R. & Olin, M. (2013) Microstructural investigation of calcium montmorillonite. Clay Minerals, 48, 267–276.10.1180/claymin.2013.048.2.08CrossRefGoogle Scholar
Muurinen, A., Carlsson, T. & Root, A. (2013) Bentonite pore distribution based on SAXS, chloride exclusion and NMR studies. Clay Minerals, 48, 251–266.10.1180/claymin.2013.048.2.07CrossRefGoogle Scholar
Myllykylä, E., Tanhua-Tyrkkö, M., Bouchet, A. & Tiljander, M. (2013) Dissolution experiments of Naand Ca-montmorillonite in groundwater simulants under anaerobic conditions. Clay Minerals, 48, 295–308.10.1180/claymin.2013.048.2.11Google Scholar
Satoh, H., Ishii, T. & Owada, H. (2013) Dissolution of compacted montmorillonite at hyperalkaline pH and 70°C: in situ VSI and ex situ AFM measurements. Clay Minerals, 48, 285–294.10.1180/claymin.2013.048.2.10Google Scholar
Sawaguchi, T., Yamaguchi, T., Iida, Y., Tanaka, T. & Kitagawa, I. (2013) Diffusion of Cs, Np, Am and Co in compacted sand-bentonite mixtures: evidence for surface diffusion of Cs cations. Clay Minerals, 48, 411–422.10.1180/claymin.2013.048.2.19Google Scholar
Suzuki, K., Asano, H., Yahagi, R., Kobayashi, I., Sellin, P., Svemar, C. & Holmqvist, M. (2013) Experimental investigations of piping phenomena in bentonitebased buffer materials for an HLW repository. Clay Minerals, 48, 363–382.10.1180/claymin.2013.048.2.15CrossRefGoogle Scholar
Svoboda, J. (2013) The experimental study of bentonite swelling into fissures. Clay Minerals, 48, 383–389.10.1180/claymin.2013.048.2.16CrossRefGoogle Scholar
Valter, M. & Plötze, M. (2013) Characteristics of variably saturated granular bentonite after long-term storage at near-field relevant temperatures. Clay Minerals, 48, 343–361.10.1180/claymin.2013.048.2.14Google Scholar
Wang, L.L., Bornert, M., Chanchole, S., Yang, D.S., Héripré, E., Tanguy, A. & Caldemaison, D. (2013) Micro-scale experimental investigation of the swelling anisotropy of the Callovo-Oxfordian argillaceous rock. Clay Minerals, 48, 391–402.10.1180/claymin.2013.048.2.17Google Scholar
Watson, C., Savage, D., Wilson, J., Benbow, S., Walker, C. & Norris, S. (2013) The Tournemire industrial analogue: reactive transport modelling of a cementclay interface. Clay Minerals, 48, 167–184.10.1180/claymin.2013.048.2.02Google Scholar
Yamaguchi, T., Kataoka, M., Sawaguchi, T., Mukai, M., Hoshino, S., Tanaka, T., Marsal, F. & Pellegrini, D. (2013a) Development of a reactive transport code MC-CEMENT ver. 2 and its verification using 15-year in situ concrete/clay interactions at the Tournemire URL. Clay Minerals, 48, 185–197.Google Scholar
Yamaguchi, T., Sawaguchi, T., Tsukada, M., Kadowaki, M. & Tanaka, T. (2013) Changes in hydraulic conductivity of sand-bentonite mixtures accompanied by alkaline alteration. Clay Minerals, 48, 403–410.10.1180/claymin.2013.048.2.18CrossRefGoogle Scholar