Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:57:58.394Z Has data issue: false hasContentIssue false

The origin of clay minerals in the Coniacian Chalk of London

Published online by Cambridge University Press:  09 July 2018

R. T. Kimblin*
Affiliation:
Postgraduate Research Intitute for Sedimentology University of Reading, Whiteknights, PO Box 227, Reading RG6 2AB UK

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, M.A. & Lawrence, D.F. (1972) Geological Laboratory Techniques. Blandford Press. London.Google Scholar
Brindley, G.W. & Brown, G. (1980) The X-ray Identification and Crystal Structure of Clay Minerals. Mineralogical Society, London CrossRefGoogle Scholar
Harland, W.B., Cox, A.V., Llewellyn, P.G., PicktonC.A.G., Smith, A.G. & Walters, R. (1982)4 Geologic Time Scale. Cambridge University Press.Google Scholar
Heim, D. (1957) Uber die minerlischen, nichtkarbonatischen Bestandteile des Cenoman und mitteldeutschen Kreidemulden und ihre Verteilung. Heidelberger Beitrager zur Mineralogie und Petrographie 5, 302330.Google Scholar
Jeans, C.V. (1968) The origin of the montmorillonite of the European Chalk with special reference to the Lower Chalk of England. Clay Miner. 7, 311329.CrossRefGoogle Scholar
Kennedy, W.J. & Garrison, R.E. (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of Southern England. Sedimentology 22, 311386.CrossRefGoogle Scholar
Kimblin, R.T. (1991) Groundwater-sediment reactions in the London Basin aquifer system, with specific reference to artifical groundwater recharge. PhD thesis, Univ. Reading, UK.Google Scholar
Millot, G., Camez, T. & Bonte, A. (1957) Sur la montmorillonite dans les craies. Bull Serv. Carte Geol. Als-Lorr. 10, 2526.Google Scholar
Mortimore, R.N. & Fielding, P.M. (1989) The relationship between texture, density and strength of chalk. Proc. Int. Chalk Sym. 4769.Google Scholar
Murray, K.H. (1982) Correlation of Electrical Resistivity Marker Bands in the Chalk of the London Basin.Report of the Hydrogeology Unit, Institute of Geological Sciences, UK, Report WD/82/1 (unpublished).Google Scholar
Newman, A.C.D. & Brown, G. (1987) Chemistry of Clays and Clay Minerals.Mineralogical Society, London.Google Scholar
Okamoto, K. (1982) Preparation, Analysis and Certification of Pond Sediment, Certified Reference Material. National Institute for Environmental Studies Japan, Report 38.Google Scholar
Olivarez, A.M., Owen, R.M. & Rea, D.K. (1991) Geochemistry of eolian dust in Pacific pelagic sediments: Implications for palaeoclimatic interpretations. Geochim. Cosmochim. Acta 55, 21472158.CrossRefGoogle Scholar
Pacey, N.R. (1984) Bentonites in the Chalk of central eastern England and their relation in the opening of the north east Atlantic. Earth Planet. Sci. Lett. 67, 4860.CrossRefGoogle Scholar
Rea, D.K., Leinen, M. & Janecek, T.R. (1985) Geologic approach to the long-term history of atmospheric circulation. Science 227, 721725.CrossRefGoogle Scholar
Weir, A.H. & Catt, J. A. (1965) The mineralogy of some Upper Chalk samples from the Arundel area, Sussex. Clay Miner. 6, 97110.CrossRefGoogle Scholar