Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T19:44:01.890Z Has data issue: false hasContentIssue false

Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey

Published online by Cambridge University Press:  09 July 2018

M. Arslan*
Affiliation:
Karadeniz Technical University, Department of Geological Engineering, 61080 Trabzon, Turkey
S. Kadir
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, 26480 Eskişehir, Turkey
E. Abdioğlu
Affiliation:
Karadeniz Technical University, Department of Geological Engineering, 61080 Trabzon, Turkey
H. Kolayli
Affiliation:
Karadeniz Technical University, Department of Geological Engineering, 61080 Trabzon, Turkey
*

Abstract

Widespread chemical weathering of Tertiary alkaline volcanic rocks in the vicinity of Trabzon (NE Turkey) has led to the formation of well developed reddish-brown saprolite. These saprolites are dominated by kaolin minerals (predominantly kaolinite), with minor quantities of halloysite, pyrophyllite, chlorite, smectite, hematite and illite. Other common minerals are opal-CT, quartz and occasional feldspar, clinopyroxene, hematite and Fe-Mn-Ti oxides. The significant degree of fracturing and fragmentation of primary igneous minerals within the pyroclastic units, and subsequent penetration by reactive fluids, resulted in partial chloritization of clinopyroxene, albitization of plagioclase and precipitation of Fe-Mn-Ti-oxides within fractures and dissolution voids. Kaolin minerals occur as spongy fibrous meshes surrounding partly dissolved volcanic glass and devitrified sub-rounded grains that may be relict allophane. Field observations and mineralogical-chemical characteristics indicate that the alteration of the Tertiary volcanic units of the Black Sea region was controlled by chemical weathering during circulation of oxic meteoric or mixed meteoric and marine waters. Intense fracturing and fragmentation of the pyroclastic rocks resulted in the formation of clay minerals in the upper saprolite level under acidic and largely oxidizing conditions. Incongruent dissolution was associated with the leaching and downward transport of Si, Na, K and Ca and the concentration of Al. In such an environment, early precipitation of halloysite from allophane was probable, and it gradually transformed into kaolinite during aging and progressive weathering.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdioglu, E. & Arslan, M. (2005) Mineralogy, geochemistry and genesis of bentonites of the Ordu area, NE Turkey. Clay Minerals, 40, 131—151.Google Scholar
Akbulut, A. & Kadir, S. (2003) The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey. Clays and Clay Minerals, 51, 279—292.Google Scholar
Akçay, M. & Moon, CJ (2001) Geochemistry of pyritebearing and purple dacites in northeastern Turkey: a new exploration tool for the Kuroko type deposits. Pp. 210—213.in: Mineral Deposits at the Beginning of the 21s’ Century (Pietrzynski, A., editor). Proceedings of the Joint Biennial SGA-SEG Meeting, Krakow, Poland.Google Scholar
Arslan, M. (2003) Dogu Pontid Tersiyer volkanizmasimn jeokimyasal ve petrolojik ôzellikleri: Jeodinamik geli§ime ait bazi ipuçlan. Dogu Karadeniz Bôlgesinin Jeolojisi ve Maden Potansiyeli Sempozyumu Bildiri Ozleri, Trabzon, 103—105.Google Scholar
Arslan, M. & Asian, Z. (2006) Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27, 177—193.CrossRefGoogle Scholar
Arslan, M., N., Tûysûz, Korkmaz, S. & Kurt, H. (1997) Geochemistry and petrogenesis of the Eastern Pontide volcanic rocks, Northeast Turkey. Chemi derErde, 57, 157—187.Google Scholar
Arslan, M., Temizel L & Abdioglu, E. (2002) Subduction input versus source enrichment and role of crustal thickening in the generation of Tertiary magmatism in the Pontid Paleo-Arc setting, NE Turkey. Pp. 13—16.in: Workshop-Short Course on Volcanic Systems, Geochemical and Geophysical Monitoring, Melt Inclusions: Methods, Applications and Problems, Napoli, Italy (de Vivo, B. and Bodnar, R.J., editors).Google Scholar
Arslan, M., Kolayh, H. & Abdioglu, E. (2005) Tirebolu (Giresun) yôresindeki kil yataklarinin jeolojik, mineralojik, jenetik ve ekonomik ôzelliklerinin incelenmesi. Karadeniz Technical University Scientific Research Project (2002.112.005.04) Report, Trabzon, Turkey, 57 pp.Google Scholar
Aydin, F. (2003) Degirmendere vadisi (Trabzon- Esiroglu, KD Tiirkiye) volkanitlerinin mineral kimyasi, petrolojisi ve petrojenezi. PhD thesis (unpublished), Karadeniz Technical University, Trabzon, Turkey 232 pp.Google Scholar
Bates, R.L & Jackson, J.A (1987) Glossary of Geology, 3rd edition. American Geological Institute, Alexandria, Virginia, USA. Google Scholar
Birkeland, P.W (1984) Soil and Geomorphology. Oxford University Press, Oxford, UK.Google Scholar
Brindley, G.W (1980) Quantitative X-ray mineral analysis of clays. Pp. 411—438.in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Buol, S.W (1994) Saprolite-regolith taxonomy - an approximation. Pp. 120—132.in: Whole Regolith Pedology (Cremens, D.L., Brown, R.B. & Huddleston, J.H., editors). Special Publication 34, Soil Science Society of America.Google Scholar
Buol, S.W, Hole, F.D, McCracken, R.J & Southard, R.J (1997) Soil Genesis and Classification, 4th edition. Iowa State University Press, Ames, Iowa, USA, 527 pp.Google Scholar
M.N., Çagatay (1993) Hydrothermal alteration associated with volcanogenic massive sulfide deposits: Examples from Turkey. Economic Geology, 88, 606—621.Google Scholar
M., Çelik, Karakaya, N. & Temel, A. (1999) Clay minerals in hydrothermally altered volcanic rocks, eastern Pontides, Turkey. Clays and Clay Minerals, 47, 708—717.Google Scholar
Chesworth, W., Dejou, J. & Larroque, P. (1981) The weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochimica et Cosmochimica Acta, 45, 1235—1243.Google Scholar
Christidis, G. (1998) Comparative study of the mobility of major and trace elements during alteration of an andésite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379—399.Google Scholar
Christidis, G. & Dunham, A.C (1993) Compositional variations in smectites Part I. Alteration of intermediate volcanic rocks. A case study from Milos Island, Greece. Clay Minerals, 28, 255—273.Google Scholar
Christidis, G. & Dunham, A.C (1997) Compositional variations in smectites Part II: Alteration of acidic precursors, a case study from Milos Island, Greece. Clay Minerals, 32, 253—270.Google Scholar
Churchman, G.J (1990) Relevance of different intercalation tests for distinguishing halloysite from kaolinite in soils. Clays and Clay Minerals, 38, 591—599.Google Scholar
Churchman, G.J & Gilkes RJ. (1989) Recongition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles. Clay Minerals, 24, 579—590.Google Scholar
Cramer, J.J & Nesbitt, H.W (1983) Mass-balance relations and trace element mobility during continental weathering of various igneous rocks. Symposium on Petrology of Weathering and Soils. Scientifique Géologique Mémoires, 73, 63—73.Google Scholar
Dekayir, A. & M., El Maâtaoui (2000) Apport de l'analyse d'images dans l'étude de l'altération d'un basalte alcalin (Moyen Atlas, Maroc). Enginering Geology, 56, 325—334.Google Scholar
Delvigne, J.E (1998) Atlas of micromorphology of mineral alteration and weathering. The Canadian Mineralogist, Special Publication No. 3, Mineralogical Association of Canada, 495 pp.Google Scholar
Driese, S.G, McKay, L.D & Penfield, C.P (2001) Lithologie and pedogenic influences on porosity distribution and groundwater flow in fractured sedimentary saprolite: an application of environmental sedimentology. Journal of Sedimentary Research, 71, 843—857.Google Scholar
Eggleton, R.A & Keller, J. (1982) The palagonization of limburgite glass - A TEM study. Neues Jahrbuch fur Minéralogie, Monatshefte, 321—336.Google Scholar
Fiore, S., Huertas, F.J, Huertas, F. & Linares, J. (1995) Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays and Clay Minerals, 43, 353—360.Google Scholar
Graham, R.C, Tice, K.R & Guertal, W.R (1994) The pedogenic nature of weathered rock. Pp. 22—40 in: Whole Regolith Pedology (Cremens, D.L., Brown, R.B. & Huddleston, J.H., editors). Special Publication 34, Soil Science Society of America, Madison, Wisconsin.Google Scholar
Guerrero, R. (1971) Soils of the Colombian Llanos Orientales—composition and classification of selected soil profiles. PhD dissertation, North Carolina State University, Raleigh, North Carolina, USA (Diss, Abstr. 72—8938).Google Scholar
M.N., Gündogdu (1982) Geological, mineralogical and geochemical investigation of the Bigadiç Neogene sedimentary basin. PhD thesis (in Turkish, unpublished), Hacettepe University, Turkey, 386 pp.Google Scholar
Güven Î.H., (1993) Dogu Pontidler'in 1/250 000 ôlcekli komplikasyonu. The General Directorate of Mineral Research and Exploration (MTA), Ankara (in Turkish, unpublished).Google Scholar
Hamidi, E.M, Boulangé B. & Colin, F. (1997) Altération d'un basalte triasique de la région d'El Hajeb, Moyen Atlas, Maroc. Journal of African Earth Sciences, 24 (1/2), 141—151.Google Scholar
Huertas, F.J, Huertas, F. & Linares, J. (1993) A new approach to kinetics of kaolinite synthesis. Proceedings of the 4th International Symposium on Hydrothermal Reaction, Nancy, pp. 87—90.Google Scholar
Islam, M.R, Peuraniemi, V., Aario, R. & Rojstaczer, S. (2002) Geochemistry and mineralogy of saprolite in Finnish Lapland. Applied Geochemistry, 17, 885—902.Google Scholar
Jeans, C.V, Wray, D.S, Merriman, R.J & Fisher, M.J (2000) Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea Basin. Clay Minerals, 35, 25—55.Google Scholar
Jeong, G.Y (1998) Formation of vermicular kaolinite from halloysite aggregates in the weathering of plagioclase. Clays and Clay Minerals, 46, 270—279.Google Scholar
Jones, J.B & Segnit, E.R (1971) The nature of I.opal Nomenclature and constituent phases. Journal of Geological Society of Australia, 18, 57—68.Google Scholar
Kadir, S. & Karakas, Z. (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues Jahrbuch fur Minéralogie, Abhandlungen, 177, 113—132.Google Scholar
Kadir, S., Bas, H. & Karakag, Z. (2002) Origin of sepiolite and loughlinite in a Neogene sedimentary lacustrine environment, Mihahççik-Eskigehir, Turkey. The Canadian Mineralogist, 40, 1091—1102.Google Scholar
Kawano, M., Tomita, K. & Shimohara, Y. (1997) Analytical electron microscopic study of the noncrystalline products formed at early weathering stages of volcanic glass. Clays and Clay Minerals, 45, 440—447.Google Scholar
Keller, W.D (1978a) Progress and problems in rock weathering related to stone decay. Pp. 37—46 in: Engineering Geology Case Histories Number 11 (Winkler, E.M., editor). Geological Society of America.Google Scholar
Keller, W.D (1978b) Kaolinization of feldspars as displayed in scanning electron micrographs. Geology, 6, 184—188.Google Scholar
Korkmaz, S. & Van, A. (1995) Trabzon hyi bôlgesinin stratigrqfisi. KTÛ Jeoloji Mûhendisligi Bôlûmû 30. Yil Sempozyumu Bildiri Ôzleri, 107 pp.Google Scholar
Kunze, G.W & Dixon, J.B (1986) Pretreatment for mineralogical analysis. Pp. 91—99 in: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods (Klute, A., editor). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Land, L.S & Hoops, G.K (1973) Sodium in carbonate sediments and rocks: a possible index to salinity of diagenetic solutions. Journal of Sedimentary Petrology, 43, 614—617.Google Scholar
D.M.C., MacEwan & Wilson, M.J (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197—248 in: Crystal Structures of Clay Minerals and their X-ray Identification (W, G.. Brindley & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
MacKenzie, R.C (1957) The Differential Thermal Investigation of Clays. Monograph 2. Mineralogical Society, London, 456 pp.Google Scholar
MacLean, W.H & Kranidiotis, P. (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec. Economic Geology, 2, 951—962.Google Scholar
Murray, H.H (1988) Kaolin minerals: their genesis and occurrences. Pp. 67—89 in: Hydrous Phyllosilicates (exclusive of micas) (W. Bailey, S., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C. Google Scholar
Nagasawa, K. (1978) Kaolin minerals. Pp. 189—219.in: Clays and Clay Minerals of Japan (Sudo, T. & Shimoda, S., editors). Developments in Sedimentology 26, Elsevier, Tokyo.Google Scholar
Nesbitt, H.W, Markovics, G. & Price, R.C (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 1659—1666.Google Scholar
A.C.D., Newman & Brown, G. (1987) The chemical constitution of clays. Pp. 1 — 129 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.Google Scholar
Ozsayar, T. (1971) Géologie und Palaeontologie des Gebites Ôstlich Trabzon (Anatolian). PhD thesis, Giessen Geologisches, Giessen, Germany.Google Scholar
Paterson, E. & Swaffield, R. (1987) Thermal analysis. Pp. 99—132 in: A Handbook of Determination Methods in Clay Mineralogy (Wilson, M.J., editor). Chapman & Hall, New York, 308 pp.Google Scholar
Range, K.J, Range, A. & Weiss, A. (1969) Fire-clay type kaolinite or fire clay minerals. Experimental classification of kaolinite-halloysite minerals. Pp. 3—13 in: Proceedings of the International Clay Conference, Tokyo, 1969, vol. 1 (Heller, L., editor). Israel University Press, Jerusalem.Google Scholar
Sadiklar, M.B, Goerg, U. & Van, A. (1995) Mineralogische und geochemische eigenschaften der terrestrisch-hydrogenetischen Fe-Mn knollen von der Trabzon Region, NE Tûrkei. Chemi der Erde, 55, 177—188.Google Scholar
P.D.S., Santos, Brindley, G.W & H.D.S., Santos (1965) Mineralogical studies of kaolinite-halloysite clays: III. A fibrous kaolin mineral from Piedade, Sao Paulo, Brazil. American Mineralogist, 50, 619—628.Google Scholar
C, Sen, Arslan, M. & Van, A. (1998) Geochemical and petrological characteristics of the eastern Pontide Eocene (?) Alkaline Volcanic Province, NE Turkey. Turkish Journal of Earth Sciences, 7, 231—239.Google Scholar
Sheppard, R.A & Gude, A.J (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona: Physical properties, chemistry, and origin of silicate minerals formed in tuffaceous rocks of a Pliocene lacustrine deposit. U.S. Geological Survey Professional Paper 830, 36 pp.Google Scholar
Singer, A. (1980) The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth Science Review, 15, 303—326.Google Scholar
Soil Survey Staff (1998) Keys to Soil Taxonomy, 8th edition. U.S. Government Printing Office, Washington, D.C. Google Scholar
Stolt, M.H & Baker, J.C (1994) Strategies for studying saprolite and saprolite genesis. Pp. 1—19 in: Whole Regolith Pedology (Cremens, D.L., Brown, R.B. & Huddleston, J.H., editors). Special Publication, 34. Soil Science Society of America, Madison, Wisconsin.Google Scholar
Stumm, W. (1992) Chemistry of the Solid-water Interface. J. Wiley, New York, 428 pp.Google Scholar
Taylor, S.R & McLennan, S.M (1985) The Continental Crust, its Composition and Evolution. Blackwell, Oxford, UK, 312 pp.Google Scholar
Tazaki, K., Fyfe, W.S and Van der Gaast, S.J (1989) Growth of clay minerals in natural and synthetic glasses. Clays and Clay Minerals, 37, 348—354.Google Scholar
Tazaki, K., Tiba, T., Aratani, M. & Miyachi, M. (1992) Structural water in volcanic glass. Clays and Clay Minerals, 40, 122—127.Google Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. American Mineralogist, 46, 78—91.Google Scholar
Wilson, M.J (1987) X-ray powder diffraction methods. Pp. 26—98 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Wilson, M.J (2004) Weathering of the primary rockforming minerals: processes, products and rates. Clay Minerals, 39, 233—266.Google Scholar
Winchester, J.A & Floyd, P.A (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 245—252.Google Scholar
H., Yalçin & G., Gùmû§er (2000) Mineralogical and geochemical characteristics of Late Cretaceous bentonite deposits of the Kelkit Valley Region, Northern Turkey. Clay Minerals, 35, 807—825.Google Scholar