Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T04:07:05.260Z Has data issue: false hasContentIssue false

Near vertical iso- illite- crystallinity surfaces cross-cut the recumbent fold structure of the Morcles nappe, Swiss Alps

Published online by Cambridge University Press:  09 July 2018

M. Burkhard*
Affiliation:
Institut de Géologie, rue E. Argand 11, Case Postale 2, CH 2007 Neuchâtel, Switzerland
D. Goy-Eggenberger
Affiliation:
Institut de Géologie, rue E. Argand 11, Case Postale 2, CH 2007 Neuchâtel, Switzerland
*

Abstract

Metamorphic isograd surfaces are mapped within the Morcles nappe using illite crystallinity (IC) and (clay-) mineral parageneses in 268 samples. The diagenesis-anchizone and the anchizone-epizone boundaries are nearly vertical surfaces which crosscut the present-day recumbent fold nappe structure. Frontal parts of the nappe are diagenetic (Tmax <200°C) whereas rear parts both in the normal and inverted limb are epizonal (Tmax >300°C). We demonstrate that the calcite content of shales, marls or limestones has no influence on the average IC. Deviations of individual samples from the mean IC of any given diagenetic and lower anchizonal site are very large, however, without it being possible to associate deviations with any obvious rock parameter. The standard deviations of populations of IC values decrease strongly with increasing metamorphic grade (toward smaller IC values). Mapping the diagenesis-anchizone boundary requires a much larger sampling effort than the same exercise for the anchizone-epizone boundary.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badoux, H. (1972) Tectonique de la nappe de Morcles entre Rhône et Lizerne. Matér. Carte Géol. Suisse [n.s. ] 143.Google Scholar
Burkhard, M. (1986) Déformation des calcaires de l’Helvétique de la Suisse occidentale (Phénomènes, mécanismes et interprétations tectoniques. Rev. Géol. dynamique Géogr. phys. 27, 281–301.Google Scholar
Burkhard, M. (1988a) Horizontalschnitt des Helvetikums der Westschweiz (Rawildepression). Beitr. Landes Hydrol. - Geol. 4.Google Scholar
Burkhard, M. (1988b) L’Helvétique de la bordure occidentale du massif de l’Aar (évolution tectonique et métamorphiqu e). Eclogae Geol. Helv. 81, 63–114.Google Scholar
Burkhard, M. (1990) Ductile deformation mechanisms in micritic limestones naturally deformed at low temperatures (150–350°C). Pp. 241–257 in. Deformation Mechanisms, Rheology and Tectonics (Knipe, R.J. & Rutter, E.H., editors). Spec. Publ. 54. Geological Society, London.Google Scholar
Burkhard, M. & Kerrich, R. (1988) Fluid regimes in the deformation of the Helvetic nappes, Switzerland, as inferred from stable isotope data. Contrib. Mineral. Petrol. 99, 416–429.Google Scholar
Burkhard, M. & Sommaruga, A. (1998) Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt. Pp. 279–298 in. Cenozoic Foreland Basins of Western Europe (Mascle, A., Puigdefàbregas, C., Luterbacher, H.P. & Fernàndez, M., editors). Spec. Publ. 134. Geological Society, London.Google Scholar
Bussy, F. & Epard, J.L. (1984) Essai de zonéographie métamorphique entre les Diablerets et le massif de l’Aar (Suisse occidentale), basée sur l’étude des Grès de Taveyanne. Schweiz. Mineral. Petrogr. Mitt. 64, 131–150.Google Scholar
Dietrich, D. & Casey, M. (1989) A new tectonic model for the Helvetic nappes. Pp. 47–63 in. Alpine Tectonics (Coward, M.P., Dietrich, D. & Park, R.G., editors). Spec. Publ. 45. Geological Society, London.Google Scholar
Durney, D. (1972) Deformation history of the western Helvetic nappes. PhD thesis, Imperial College, London.Google Scholar
Durney, D. (1974) Relations entre les températures d’homogénéisation d’inclusions fluides et les minéraux métamorphiques dans les nappes hélvétiques du Valais. Bull. Soc. Géol. France, 16, 269–272.Google Scholar
Escher, A., Masson, H. & Steck, A. (1993) Nappe geometry in the Western Swiss Alps. J. Struct. Geol. 15, 501–509.Google Scholar
Flehmig, W. (1973) Kristallinität und Infrarotspektroskopie natü rlicher dioktaedrischer Illite. Neues Jahrb. Mineral. Mon.351–361.Google Scholar
Flehmig, W. & Langheinrich, G. (1974) Beziehung zwischentekt onische r Deformation und Illit- Kristallinität. Neues Jahrb. Geol. Paläontol. Abh. 146, 325–326.Google Scholar
Frey, M. (1987a) Low Temperature Metamorphism. Blackie, Glasgow.Google Scholar
Frey, M. (1987b) The reaction-isograd kaolinite + quartz = pyrophyllite + H2O, Helvetic Alps, Switzerland. Schweiz. Mineral. Petrogr. Mitt. 67, 1–11.Google Scholar
Frey, M. (1987c) Very low grade metamorphism of clastic sedimentary rocks. Pp. 9–58 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow.Google Scholar
Frey, M. & Robinson, D. (1999) Low Grade Metamorphism. Blackwell Science, Oxford.Google Scholar
Frey, M., Teichmü ller, M., Mullis, J. , Kü nzi, B., Breitschmid, A., Gruner, U. & Schwizer, B. (1980) Very low grade metamorphism in external parts of the Central Alps: Illite crystallinity, coal rank and fluid inclusion data. Eclogae Geol. Helv. 73, 173–203.Google Scholar
Goy-Eggenberger, D. (1998) Faible métamorphisme de la nappe de Morcles: minéralogie et géochimie. PhD thesis, Neuchâtel Univ., Switzerland.Google Scholar
Goy-Eggenberger, D. & Kübler, B. (1990) Résultats préliminaires d’un essai de zonéographie métamorphique à travers les formations calcaires de la nappe de Morcles. Schweiz. Mineral. Petrogr. Mitt. 70, 83–88.Google Scholar
Groshong, R.H. (1988) Low temperature deformation mechanisms and their interpretation. Geol. Soc. Am. Bull. 100, 1329–1360.2.3.CO;2>CrossRefGoogle Scholar
Heim, A. (1921) Geologie der Schweiz. Band 2: Die Schweizer Alpen 1. Hälfte. Tauchniz, Leipzig.Google Scholar
Huggenberger, P. (1985) Faltenmodel le und Verformungsverteil ung in Deckenstrukturen am Beispiel der Morcles-Decke (Helvetikum der Westschweiz). PhD, ETH-Zürich, Switzerland.Google Scholar
Hunziker, J.C. (1987) Radiogenic isotopes in very lowgrade metamorphism. Pp. 200–226 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow.Google Scholar
Jeanbourquin, P. (1994) Early deformation of Ultrahelvetic mélanges in the Helvetic nappes (Western Swiss Alps). J. Struct. Geol. 16, 1367–1383.Google Scholar
Jeanbourquin, P. & Goy-Eggenberger, D. (1991) Les mélanges au front de la nappe de Morcles. Géol. Alp. 67.Google Scholar
Kirschner, D.L., Sharp, Z.D. & Masson, H. (1995) Oxygen isotope thermome try of quartz- calcite veins: Unravelling the thermal-tectonic history of the subgreenschist facies Morcles nappe (Swiss Alps). Geol. Soc. Am. Bull. 107, 1145–1156.2.3.CO;2>CrossRefGoogle Scholar
Kisch, H.J. (1980) Illite crystallinity and coal rank associated with lowest-grade metamorphism of the Taveyanne greywacke in the Helvetic zone of the Swiss Alps. Eclog. Geol. Helv. 73, 753–777.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low-grade metamorphism. Pp. 227–300 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone:a critical comparison of illite ‘crystallinity ’ scales used for definition. J. Metam. Geol. 8, 31–46.Google Scholar
Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Revue Inst. Franç. Pétrole, 19, 1093–1112.Google Scholar
Kübler, B. (1967a) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. Pp. 105–121 in: Etages tectoniques, Colloque de Neuchâtel 1966 (Neuchâtel I.d.G.d.). La Baconnière, Neuchâtel, Switzerland.Google Scholar
Kübler, B. (1967b) Stabilité et fidélité de mesures simples sur les diagrammes de rayons X. Bull. Groupe franç. Argiles, 19, 39–47.Google Scholar
Langenberg, W., Charlesworth, H. & La Riviere, A. (1987) Computer-constructed cross-section of the Morcles nappe. Eclog. Geol. Helv. 80, 655–667.Google Scholar
Lateltin, O. (1988) Les dépôts turbiditiques oligocènes d’avant-pays entre Annecy (Haute-Savoie) et le Sanetsch (Suisse). PhD, Univ. Fribourg, Switzerland.Google Scholar
Lugeon, M. (1914) Les hautes alpes calcaires entre la Lizerne et la Kander. Matér. Carte Géol. Suisse [n.s. ] 30.Google Scholar
Masson, H., Herb, R. & Steck, A. (1980) Helvetic Alps of Western Switzerland, excursion no. 1. in: Geology of Switzerland part II.(Trümpy, R., editor). Wepf, Basel.Google Scholar
Merriman, R.J. & Roberts, B. (1985) A survey of white mica cristallinity and polytypes in pelitic rocks of Snowdonia and Llyn, North Wales. Mineral Mag. 49, 305–319.CrossRefGoogle Scholar
Moss, S. (1992) Organic maturation in the French Subalpine Chains: regional differences in burial history and the size of tectonic loads. J. Geol. Soc. 149, 503–515.Google Scholar
Persoz, F. (1982) Inventaire minéralogique, diagenèse des argiles et minéralostratigraphie des séries jurassiques et crétacées inférieures du Plateau suisse et de la bordure Sud-Est du Jura entre les lacs d’Annecy et de Constance. Matér. Carte Géol. Suisse [n.s. ] 155.Google Scholar
Ramsay, J. (1981) Tectonics of the Helvetic Nappes. in. Thrust and Nappe Tectonics (McClay, K. & Price, N.J., editors). Spec. Publ. 9. Geological Society, London.Google Scholar
Ramsay, J.G. & Huber, I.M. (1983) The Techniques of Modern Structural Geology Vol. 1. Academic Press, London.Google Scholar
Ramsay, J.G. & Huber, I.M. (1987) The Techniques of Modern Structural Geology Vol. 2. Academic Press, London.Google Scholar
Scherrer, P. (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachr. Math. Phys. 2, 98–100.Google Scholar
Schmid, S.M. (1982) Microfabric studies as Indicators of Deformation Mechanisms and Flow Laws Operative in Mountain Building. Pp. 95–110 in: Mountain Building Processes (Hsü, K.J. , editor). Academic Press, London.Google Scholar
Siddans, A. (1983) Finite strain pattern in some Alpine nappes. J. Struct. Geol. 3/4, 441–448.Google Scholar
Weaver, C.E. (1960) Possible uses of clay minerals in search for oil. Am. Assoc. Petrol. Geol. Bull. 44, 1505–1518.Google Scholar
Weaver, C.E. & Broekstra, B.R. (1984) Illite–Mica. Pp. 67–97 in. Shale-Slate Metamorphism in Southern Appalachians (Weaver, C.E., editor). Developments in Petrology, 10. Elsevier, Amsterdam.Google Scholar