Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T23:53:50.669Z Has data issue: false hasContentIssue false

The nature and origin of authigenic smectites in some recent marine sediments

Published online by Cambridge University Press:  09 July 2018

T. G. Cole
Affiliation:
Department of Geology, Imperial College, Prince Consort Road, London SW7, UK
H. F. Shaw
Affiliation:
Department of Geology, Imperial College, Prince Consort Road, London SW7, UK

Abstract

Three principal modes of formation are apparent for authigenic smectites in Recent marine sediments: alteration of volcanic rocks and glass, low-temperature combination of biogenic silica and Fe-oxyhydroxides, and direct precipitation from hydrothermal fluids. The latter two mechanisms are discussed with reference to new evidence from studies of sediments from the Bauer Deep of the equatorial eastern Pacific and the Atlantis II Deep in the Red Sea. In the Atlantis II Deep sediments, three sub-environments of smectite formation from hydrothermal fluids are recognized. In two of them nontronites are formed, whilst in the third an Fe-poor smectite, intermediate in composition between beidellite and montmorillonite, occurs.

Resume

Resume

Il existe trois modes de formation de smectites authigènes dans les sédiments marins récents: l'altération de roches et verres volcaniques, la combinaison à basse température de silice biogène et d'oxhydrate de fer, la précipitation directe au sein de fluides hydrothermaux. Les deux derniers mécanismes sont discutés en faisant appel à des résultats nouveaux dus à l'étude de sédiments de la Dépression de Bauer du Pacifique Equatorial Oriental et de la Dépression Atlantis II de la Mer Rouge. Les sédiments de la Dépression Altantis Il permettent de mettre en évidence 3 sous groupes de formation de smectite à partir de fluídes hydrothermaux. Dans 2 de ceux-ci on forme de la nontronite, tandis que dans la 3e apparaît une smectite pauvre en fer de composition intermédiaire entre une beidellite et une montmorillonite.

Kurzreferat

Kurzreferat

Drei hauptsächliche Bildungsprozesse für authigene Smectite in rezenten marinen Sedimenten sind: Verfänderung vulkanischer Gesteine und Gläser, Reaktion von biogener Kieselsäure mit Fe oxyhydroxiden bei niedrigen Temperaturen und direkte Ausfällung aus hydrothermalen Lösungen. Anhand neuerer Ergebnisse von Untersuchungen des Bauer-Tief (östlicher äquatorialer Pazifik) und des Atlantis II-Tief (Rotes Meer) werden die letzteren zwei Mechanismen diskutiert. In den Sedimenten des Atlantis II-Tief sind drei unterschiedliche Bildungsmilieus für Smectite aus hydrothermalen Lösungen zu finden: In zwei davon bilden sich Nontronite, während im dritten ein eisenarmer Smectit gebildet wird, der in der Zusammensetzung zwischen Beidellit und Montmorillonit steht.

Resumen

Resumen

Existen tres principales modos de formación de esmectitas autigénicas en sedimentos marinos recientes: alteración de rocas volcánicas y vidrios, combinación a baja temperatura de silice biógene y oxihidróxidos de hierro, y precipitación directa a partir de flúidos hidrotermales. Se discuten los dos últimos mecanismos teniendo en cuenta las recientes evidencias obtenidas en el estudio de los sedimentos de la depresión Bauer en el Pacifico este ecuatorial y de la depresión Altantis II en el mar Rojo. En los sedimentos de la depresion Atlantis II aparecen tres subentornos de formación de esmectitas a partir de flúidos hidro termales. En dos de ellos se forman nontronitas, mientras que en el tercero aparece una esmectita pobre en hierro, de composición intermedia entre beidellita y montmorillonita.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, S., Kohyama, N. & Sudo, T. (1974) An iron-rich montmorillonite in a sediment core from the north-east Pacific. Deep Sea Res. 21, 865875.Google Scholar
Aoki, S., Kohyama, N. & Sudo, T. (1979) Mineralogical and chemical properties of smectites in a sediment core from the south-eastern Pacific. Deep Sea Res. 26, 893902.CrossRefGoogle Scholar
Bäcker, H. & Richter, H. (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis-II-Tief im Roten Meer. Geol. Rund. 62, 697741.CrossRefGoogle Scholar
Bailey, S.W. (1980) Summary of recommendations of AIPEA Nomenclature Committee. Clay Miner. 15, 8593.Google Scholar
Banks, H. (1972) Iron-rich saponite. Additional data on samples dredged from the Mid-Atlantic Ridge 22°N latitude. Smithsonian Contrib. Earth Sci. 9, 3942.Google Scholar
Banks, H.H. & Melson, W.G. (1966) Saponite from the Mid-Atlantic Ridge 22°N latitude. Ann. Meeting Geol. Soc. Am. (Abstracts) 910.Google Scholar
Bass, M.N., Moberly, R., Rhodes, J.M., Shih, C.S. & Church, S.E. (1973) Volcanic rocks cored in the Central Pacific Leg 17 Deep Sea Drilling Project. Initial Reports DSDP 17. U.S. Govt. Printing Office, Washington DC, 429 pp.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of Recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Bull. Geol. Soc. Am. 76, 803832.Google Scholar
Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner. 20, 217223.Google Scholar
Bohor, B.F. & Hughes, R.E. (1971) Scanning electron microscopy of clays and clay minerals. Clays Clay Miner. 19, 4954.Google Scholar
Cann, J.R., Winter, D.K. & Pritchard, R.G. (1977) A hydrothermal deposit from the floor of the Gulf of Aden. Miner. Mag. 41, 193199.Google Scholar
Cole, T.G. (1982) Mineralogy and geochemistry of metalliferous sediments from the Bauer Deep, southeast Pacific, and the Atlantis II Deep, Red Sea. PhD Thesis, Univ. of London.Google Scholar
Corliss, J.B., Lyle, M., Dymond, J. & Crane, K. (1978) The chemistry of hydrothermal mounds near the Galapagos Rift. Earth Planet. Sci. Lett. 40, 1224.CrossRefGoogle Scholar
Dymond, J. & Eklund, W. (1978) A microprobe study of metalliferous sediment components. Earth Planet. Sci. Lett. 40, 243251.Google Scholar
Dymond, J. & Veeh, H.H. (1975) Metal accumulation rates in the south east Pacific and the origin of metalliferous sediments. Earth Planet. Sci. Lett. 28, 1322.Google Scholar
Edmond, J.M., Von Damm, K.L., McDuff, R.E. & Measures, C.I. (1982) Chemistry of hot springs in the East Pacific Rise and their effluent dispersal. Nature 297, 187191.Google Scholar
Griffin, J.J., Windom, H. & Goldberg, E.D. (1968) The distribution of clay minerals in the World Oceans. Deep Sea Res. 15, 433459.Google Scholar
Goulart, P. (1976) Different smectite types in sediments of the Red Sea. Geol. Jahrb. 17, 135179.Google Scholar
Hackett, J.P. & Bischoff, J.L. (1973) New data on the stratigraphy, extent and geologic history of the Red Sea geothermal deposits. Econ. Geol. 68, 553567.Google Scholar
Harder, H. (1976) Nontronite synthesis at low temperatures. Chem. Geol. 18, 169180.Google Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26, 6572.Google Scholar
Hartmann, M. (1980) Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965. Deep Sea Res. 27, 161171.CrossRefGoogle Scholar
Heath, G.R. & Dymond, J. (1977) Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep and Central Basin, north west Nazca Plate. Bull. Geol. Soc. Am. 88, 723733.2.0.CO;2>CrossRefGoogle Scholar
Heath, G.R. & Dymond, J. (1981) Metalliferous sediment deposition in time and space. East Pacific Rise and Bauer Basin, northern Nazca Plate. Pp. 175198 in: Nazca Plate: Crustal Formation and Andean Convergence. (Kulm, L. D. et al., editors). Geol. Soc. Am. Mem. 154.Google Scholar
Hein, J.R. & Scholl, D.W. (1978) Diagenesis and distribution of late Cainozoic volcanic sediment in the southern Bering Sea. Bull. Geol. Soc. Am. 89, 197210.Google Scholar
Hein, J.R., Yeh, H. W. & Alexander, E. (1979) Origin of iron-rich montmorillonite from the manganese nodule belt of the north equatorial Pacific. Clays Clay Miner. 27, 185194.Google Scholar
Kurnosov, V.B., Kholodokevich, I.V., Kokorina, L.P., Kotov, N.V. & Chudaev, O.V. (1982) The origin of clay minerals in the oceanic crust revealed by natural and experimental data. Proc. Int. Clay Conf. Bologna and Pavia, 547556.Google Scholar
Lonsdale, P. (1979) A deep sea hydrothermal site on a strike-slip fault. Nature 281, 531534.Google Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197248 in: Crystal Structures of Clay Minerals and their X-ray Identification. (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
McMurtry, G.M. & Yeh, H-W. (1981) Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. Chem. Geol. 32, 189205.Google Scholar
Melson, W.G. & Thompson, G. (1973) Glassy abyssal basalts, Atlantic sea floor near St. Pauls Rocks: Petrography and composition of secondary clay minerals. Bull. Geol. Soc. Am. 84, 703716.Google Scholar
Moorby, S.A. & Cronan, D.S. (1983) The geochemistry of hydrothermal and pelagic sediments from the Galapagos hydrothermal mounds field. DSDP Leg 70. Miner. Mag. 47, 291300.Google Scholar
Rateev, M.A., Gorbunova, Z.N., Lisitzyn, A.P. & Nosov, G.L. (1969) The distribution of clay minerals in the oceans. Sedimentology 13, 21178.CrossRefGoogle Scholar
Rona, P.A., Harrison, R.N., Bassinger, R.G., Scott, R.B. & Nalwalk, A.J. (1976) Tectonic fabric and hydrothermal activity of Mid Atlantic Ridge crust (lat. 26°N). Bull. Geol. Soc. Am. 87, 661674.Google Scholar
Scheidegger, K.F. & Stakes, D.S. (1977) Mineralogy, chemistry and crystallisation sequence of clay minerals in altered tholeitic basalts from the Peru Trench. Earth Planet. Sci. Lett. 36, 413422.CrossRefGoogle Scholar
Seyfried, W.E., Shanks, W.C. & Dibble, W.E. (1978) Clay mineral formation in DSDP Leg 34 basalt. Earth Planet. Sci. Lett. 41, 265276.CrossRefGoogle Scholar
Shanks, W.C. & Bischoff, J.L. (1977) Ore transport and deposition in the Red Sea geothermal system: a geochemical model. Geochim. Cosmochim. Acta 41, 1507–159.Google Scholar
Vallier, T.L. & Kidd, R.B. (1977) Volcanic sediments in the Indian Ocean. Pp. 87118 in: Indian Ocean Geology and Biostratigraphy (Heirtzler, J. R. et al., editors). Am. Geophys. Union. Washington DC.Google Scholar
Windom, H.L. (1976) Lithogenous material in marine sediments. Pp. 103135 in: Chemical Oceanography 5. (Riley, J. P. & Chester, R., editors). Academic Press.Google Scholar