Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:15:56.906Z Has data issue: false hasContentIssue false

Na-magadiite prepared in a water/alcohol medium: synthesis, characterization and use as a host material to prepare alkyltrimethylammonium- and Si-pillared derivates

Published online by Cambridge University Press:  09 July 2018

M. Sassi
Affiliation:
Laboratoire de Matériaux Minéraux, UMR CNRS 7016, Ecole Nationale Supérieure de chimie de Mulhouse, Université de Haute Alsace, 3 rue A. Werner, 68093 Mulhouse cedex, France Laboratoire de Chimie des Matériaux, Faculté des Sciences, BP 1524 El'M'Naouer, Université d'Oran, 31000 Oran, Algeria
J. Miehé-Brendlé*
Affiliation:
Laboratoire de Matériaux Minéraux, UMR CNRS 7016, Ecole Nationale Supérieure de chimie de Mulhouse, Université de Haute Alsace, 3 rue A. Werner, 68093 Mulhouse cedex, France
J. Patarin
Affiliation:
Laboratoire de Matériaux Minéraux, UMR CNRS 7016, Ecole Nationale Supérieure de chimie de Mulhouse, Université de Haute Alsace, 3 rue A. Werner, 68093 Mulhouse cedex, France
A. Bengueddach
Affiliation:
Laboratoire de Chimie des Matériaux, Faculté des Sciences, BP 1524 El'M'Naouer, Université d'Oran, 31000 Oran, Algeria
*

Abstract

Syntheses of Na-magadiite were performed under hydrothermal conditions in a water/alcohol medium. It is only possible to obtain a pure and well crystallized magadiite sample using a water/ethanol medium at a water/ethanol molar ratio of ∼0.12. As shown by thermal analysis and 1H liquid nuclear magnetic resonance spectroscopy, ethanol is not incorporated into the magadiite. Intercalation of dodecyl- and hexadecyltrimethylammonium cations in the interlayer space of Na-magadiite at different theoretical ion-exchange rates shows that the experimental ion-exchange rates are in good agreement with the theoretical ones. However, scanning electron micrographs of the sample having a theoretical ion exchange rate of 25–75% shows that the exchanges are not homogeneous (both thin and thick platelets are present). Attempts to obtain a Si-pillared compound starting from C16TMA-magadiite as the host material leads to a microporous compound having a BET surface area of 778 m2g-1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, G.G., Harris, R.K. & Franklin, K.R. (1994) A study of the layered alkali metal silicate, magadiite, by one- and two-dimensional 1H and 29Si NMR spectroscopy. Journal of the Chemical Society, Chemical Communications. 851–852.Google Scholar
Almond, G.G., Harris, R.K., Franklin, K.R. & Graham, P. (1996) A 23Na NMR study of hydrous layered silicates. Journal of Materials Chemistry. 6, 843847.Google Scholar
Almond, G.G., Harris, R.K. & Franklin, K.R. (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite. Journal of Materials Chemistry. 7, 681687.Google Scholar
Brandt, A., Schwieger, W. & Bergk, K.H. (1987) A new model structure of sheet sodium (Na) silicate hydrates (Na-SH)-theoretical view based on known X-ray and NMR-measurements. Revue de Chimie Minérale. 24, 564571.Google Scholar
Brindley, G.W. (1969) Unit cell of magadiite in air, in vacuo, and under other conditions. American Mineralogist. 54, 15831591.Google Scholar
Brunauer, S., Emmet, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60, 309319.CrossRefGoogle Scholar
Crone, I.A., Franklin, K.R. & Graham, P. (1995) A new route for the preparation of hydrated alkali-metal silicates. Journal of Materials Chemistry. 5, 20072011.Google Scholar
Dailey, J.S. & Pinnavaia, T.J. (1992) Silica pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chemistry of Materials. 4, 855862.Google Scholar
Eugster, H.B. (1967) Hydrous sodium silicate from lake Magadi, Kenya: precursors for bedded chert. Science. 157, 11771180.Google Scholar
Fletcher, R.A. & Bibby, D.M. (1987) Synthesis of kenyaite and magadiite in the presence of various anions. Clays and Clay Minerals. 35, 318320.CrossRefGoogle Scholar
Fudala, A., Konya, Z., Kiyozumi, Y., Niwa, S.-L, Toba, M., Mizukami, F., Lentz, P.B., Nagy, J. & Kiricsi, I. (2000) Preparation, characterization and application of the magadiite based mesoporous composite material of catalytic interest. Microporous and Mesoporous Materials. 35-36, 631-641.CrossRefGoogle Scholar
Garces, J.M., Rocke, S.C., Crowder, C.E. & Hasha, D.L. (1998) Hypothetical structures of magadiite and octosilicate and relationships between the layered alkali metal silicates and the mordenite and pentasil group zeolites. Clays and Clay Minerals. 36, 409418.Google Scholar
Her, R.K. (1964) Ion exchange properties of a crystalline hydrated silica. Journal of Colloid Science. 19, 648657.Google Scholar
Isoda, K. & Kuroda, K. (2000) Interlamellar grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chemistry of Materials. 12, 17021707.Google Scholar
Johan, Z. & Maglione, G.F. (1972) La kanémite, nouveau silicate de sodium hydraté de néoformation. Bulletin de la Société Française de Minéralogie et de Cristallographie. 95, 371382.Google Scholar
Komori, Y., Miyoshi, M., Hayashi, S., Sugahara, Y. & Kuroda, K. (2000) Characterization of silanol groups in protonated magadiite by 1H and 2H solid-state nuclear magnetic resonance. Clays and Clay Minerals. 48, 632637.Google Scholar
Kwon, O.Y., Shin, H.S. & Choi, S.W. (2000) Preparation of porous silica-pillared layered phase: simultaneous intercalation of amine-tetraethylorthosilicate into the H+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate. Chemistry of Materials. 12, 12731278.Google Scholar
Lagaly, G. & Klaus, B. (1975a) Magadiite and Hmagadiite: I. Sodium magadiite and some of its derivatives. American Mineralogist. 60, 642–649.Google Scholar
Lagaly, G. & Klaus, B. (1975b) Magadiite and Hmagadiite: II. H-magadiite and its intercalation compounds. American Mineralogist. 60, 650–658.Google Scholar
Lagaly, G., Klaus, B. & Weiss, A. (1973) Complex derivatives of Na-magadiite. American Mineralogist. 60, 663673.Google Scholar
Landis, M.E., Aufdembrink, B.A., Chu, P., Johnson, I.D., Kirker, G.W. & Rubin, M.K. (1991) Preparation of molecular sieves from dense, layered metal oxides. Journal of the American Chemical Society. 113, 3189319.Google Scholar
Merrier, L., Facey, G.A. & Detellier, C. (1994) Organolayered silicates. Interlamellar intercalation and grafting of ethylene glycol in magadiite. Journal of the Chemical Society, Chemical Communications. 2111-2112.Google Scholar
Miyamoto, N., Kawai, R., Kuroda, K. & Ogawa, M. (2001) Intercalation of a cationic cyanine dye into the layer silicate magadiite. Applied Clay Science. 19, 39–46.Google Scholar
Munsignatti, M., Mascarenhas, A.J.S., Marques, A.L.S. & Pastore, H.O. (2001) Magadiite intercalated MCM-22. Pp. 246-249 in. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conferenc. (A. Galarneau, F. Di Renzo, F. Fajula & J. Vedrine, editors). Studies in Surface Sciences and Catalysis, 135, Elsevier Science, Amsterdam.Google Scholar
Oberhagemann, U., Topalovic, I., Marler, B. & Gies, H. (1995) Synthesis and characterization of boron containing MCM-41. Pp. 17–18 in: Zeolite Science 1994: Recent Progress and Discussions. Studies in Surface Sciences and Catalysi. (H.G. Karge & J. Weitkamp, editors). Studies in Surface Sciences and Catalysis, 98, Elsevier Science, Amsterdam.Google Scholar
Ogawa, M., Miyoshi, M. & Kuroda, K. (1998) Perfluoroalkylsilylation of the interlayer silanol groups of a layered silicate magadiite. Chemistry of Materials. 10, 37873789.Google Scholar
Pal-Borbely, G., Beyer, H.K., Kiyozumi, Y. & Mizukami, F. (1997) Recrystallization of magadiite varieties isomorphically substituted with aluminum to MFI and MEL zeolites. Microporous Materials. 11, 4551.Google Scholar
Rojo, J.M., Ruis-Hitzky, E., Sanz, J. & Serratosa, J.M. (1983) Characterization of surface Si-OH groups in layer silicic acids by IR and NMR spectroscopies. Revue de Chimie Minerale. 20, 807816.Google Scholar
Rojo, J.M., Ruiz-Hitzky, E. & Sanz, J. (1988) Proton-Sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry, 11. 2785-2790.Google Scholar
Ruiz-Hitzky, E. & Rojo, J.M. (1980) Intracrystalline grafting on layer silicic acids. Nature. 28-30.Google Scholar
Schwieger, W., Heidemann, D. & Berck, K.H. (1985) High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de Chimie Minerale. 22, 639650.Google Scholar
Sheppard, R.A. & Gude, A.J. (1970) Makatite, a new hydrous sodium silicate mineral from Lake Magadi, Kenya. American Mineralogist. 55, 358.Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry. 57, 603619.Google Scholar
Sprung, R., Davis, M.E., Kauffrnan, J.S. & Dybowski, C. (1990) Pillaring of magadiite with silicate species. Industrial Engineering Chemistry Research. 29, 213220.CrossRefGoogle Scholar
Yanagisawa, T., Kuroda, K. & Kato, C. (1988) Organic derivatives of layered polysilicates. II. Reaction of magadiite and kenyaite with diphenylmethylchlorosilane. Bulletin of the Chemical Society of Japan. 61, 37433745.Google Scholar
Yanagisawa, T., Yokoyama, C., Kuroda, K. & Kato, C. (1990) Synthesis of layered polysilicic acid acrylamide intercalation compounds and polymerization in the interlayer spaces. Bulletin of the Chemical Society of Japan. 63, 4750. Google Scholar