Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T01:47:55.260Z Has data issue: false hasContentIssue false

Morfologia y genesis de caolinitas en rocas silicificadas de la provincia de Avila (Espana)

Published online by Cambridge University Press:  09 July 2018

R. Marfil
Affiliation:
Dpto de Petrologia, Facultad de Ciencias Geologicas. Univ. Complutense. Madrid-3
A. Bustillo
Affiliation:
Dpto de Petrologia, Facultad de Ciencias Geologicas. Univ. Complutense. Madrid-3
MaC. Garcia Palacios
Affiliation:
Ibergesa. Juan Ramon Jiminez, 22, Madrid-16, Spain

Resumen

Se realiza un estudio detallado de las distintas fases minerales (caolínicas y silíceas) que aparecen en rocas silicificadas tanto graniticas como sedimentarias de la provincia de Avila.

Las técnicas utilizadas (A.T.D., difracción de rayos X, microscopía electrónica de trasmisión y de barrido) permiten establecer una clasificación de estos minerales segun sus propiedades térmicas, parámetros cristaloquímicos, y morfologías identificadas al scaning.

Sa dá una interpretación genética a cada uno de los tipos de caolinitas encontrados (macrocaolinitas en acordeón, microcaolinitas en gusanillo y criptocaolinitas). Los dos primeros tipos pueden ser explicados por procesos conjuntos de alteración hidrotermal y ‘weathering’ de feldespatos y micas. El tercer tipo (criptocaolinitas) es de más difícil interpretación al aso-ciarse con ópalo C-T en diques que cortan a rocas granitoideas y otras veces al presentarse como matriz de areniscas sedimentarias.

Abstract

Abstract

Kaolinitic and siliceous minerals present in silicified granites and sedimentary rocks from the provice of Avila, Spain, have been studied by DTA, XRD and scanning and transmission electron microscopy. Three morphologically distinct types of kaolinite were recognized: (i) ‘spiral-like’ macrokaolinite, (ii) ‘vermicular’ microkaolinite and (iii) ‘cryptokaolinite’. The first two types formed by both hydrothermal alteration and weathering of feldspars and micas. The origin of the cryptokaolinite is obscure; it is associated with opal C-T in dykes which cross the granitic rocks and it is also found in the matrix of sedimentary sandstones.

Kurzreferat

Kurzreferat

Mit Hilfe von DTA, XRD, SEM und TEM wurden kaolinitsche und kieselsaurehaltige Minerale aus Graniten und Sedimenten der Provinz Avila, Spanien, untersucht. Es konnten 3 verschiedene Kaolinittypen bestimmt werden. (I) ‘spiralförmiger’ Makrokaolinit, (II) ‘vermiculitischer’ Mikrokaolinit, (III) ‘Kryptokaolinit’. Die beiden ersten Typen werden sowohl durch hydrothermale Umwandlungen als auch durch Verwitterung von Feldspäten und Glimmer gebildet. Die Bildung des ‘Kryptokaolinit’ ist dagegen unklar; er ist oft mit C-T Opal in Gängen vergesellschaftet, die die granitischen Gesteine durchziehen. Ebenso findet man den ‘Kryptokaolinit’ in der Matrix der sedimentären Sandsteine.

Résumé

Résumé

On a fait une étude en détail des differentes phases minéralogiques (kaoliniques et siliceuses) qu'on trouve dans de roches silicifiées, aussi bien granitiques que sédimentaires, en la province d'Avila.

Les techniques employées (ATD, diffraction de rayons X, microscopie électronique à transmission et à balayage) permettent d'établir une classification de ces minéraux d'après leurs propiétés thermiques, paramètres cristalochimiques et morphologies identifiées au microscope à balayage.

On en tire une interpretation génétique pour chacun des types de kaolinites trouvés (macrokaolinites en accordéon, microkaolinites en vermicules et cryptokaolinites. Les deux premiers types peuvent être expliqués par des processus conjoints d'altération hydrothermale et ‘weathering’ de feldspaths et de micas. Le troisième type a une interpretation plus difficile, car il est associé a de l'opale C-T parfois en dykes qui traversent des roches granitiques, et parfois comme matrice de roches sédimentaires.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografia

Arenillas, M (1976) Nota acerca De dos atloramientos Del Paleógeno en el valle Amblés (Avila). Empieo De sus materiales en la construction. Tecniterrae 10, 814.Google Scholar
Barras, F (1903) Algunas observaciones sobre los granitos De Avila. Boi. R. Soc. Esp. Hist. Nat. 3, 110112.Google Scholar
Bettermann, P & Liebauf, A (1975) The transformation of amorphous silica to crystalline silica unDer hydrothermal conditions. Contr. Mineral. Petrol. 53, 2536.CrossRefGoogle Scholar
BramàO, L, Cady, J.G., Hendricks, S.B. & Swerdlow, M (1952) Characterization of kaolin minerals. Soil. Sci. 73, 273287.Google Scholar
Caillere, S & Henin, S (1947) Thermal study of clay minerals. Ann. Agron. 17, 2372.Google Scholar
Florke, O.W. (1955) Strukturanomalien bei Tridymit und Cristobalit. Berichte Der Deuslschen Keramischen gessellschafts 32, 361381.Google Scholar
FLÒRKE, O.W., HOLLMANN, R., RAD, V. & RUSCH, H. (1976) Intergrowth and twinning in opal-CT lepispheres. Contr. Mineral. Petrol. 58, 235242.CrossRefGoogle Scholar
Galan, E & Iglesia, A (1977) A discussion about kaolin genesis and synthesis. Proc. 8th Int. Kaolin Symp. Madrid-Roma. Google Scholar
Galan, E, Mattias, P P. & GalVan , J (1977) Correlation entre cristalinidad, tamano, genesis y edad De algunos caolines espanoles. Proc. 8th Int. Kaolin Symp. Madrid-Roma. Google Scholar
Grim, R.E. (1947) D.T.A. curves of clay mineral mixtures. Am. Miner. 32, 493501.Google Scholar
Hinckley, D.N. (1961) Mineralogical and chemical variations in the kaolin Deposits of the Coastal Plain of Georgia and South Carolina. PhD Thesis. The PennsylVan ia State University.Google Scholar
Holdridge, D.A. & Vaughan, F (1957) The kaolin minerals (Kandites). Pp. 98-139 in: The Differential Thermal Investigation of Clays (R. C. Mackenzie, editor). Mineralogical Society, London.Google Scholar
Jackson, M.L., Clayton, R.N., Noriyukif, J.H. & HENDerSON, B. (1977) Cristobalite morphology and oxygen isotopie composition variation unDer hydrothermal alteration. Clays Clay Miner. 25, 3138.Google Scholar
Jones, J.B. & Segnit, E.R. (1971) The nature of opal. J. Geo!. Soc. Australia 18, 5768.Google Scholar
Keller, W.D. (1976a) Scan electron micrographs of kaolins collected from diverse environments of origin: Pt. I. Clays Clay Miner. 24, 107113.Google Scholar
Keller, W.D. (1976b) Scan electron micrographs of kaolins collected from diverse environments of origin: Pt. II. Clays Clay Miner. 24, 114117.CrossRefGoogle Scholar
Keller, W.D. (1978) Kaolinitization of feldspar as displayed in scanning electron micrographs. Geology 6, 184188.Google Scholar
Keller, W.D. & Hanson, R.F. (1975) Dissimilar fabrics by scan electron microscopy of sedimentary vs. hydrothermal kaolins in Mexico. Clays Clay Miner. 23, 201204.Google Scholar
Keller, W.D., Pickett, E.E. & Reesman, A.L. (1966) Elevated Dehydroxylation temperature of the Keokuk geoDe kaolinite—A possible reference mineral. Proc. Int. Clay Conf. Jerusalem 1, 7585.Google Scholar
Mackenzie, R.C. (Editor) (1970) Differential Thermal Analysis, Vol. 1, Fundamental Aspects. AcaDemic Press, New York. 775 pp.Google Scholar
Martin Donayre, F (1879) Descripción fisica y geològica De la provincia De Avila. Mem. Inst. Geo!, y Min. De Espana, 294 pp.Google Scholar
Mitsui, K & Taguchi, K (1977) Silica mineral diagenesis in Neogene Tertiary shales in the Tempoku district. J. Sed. Petrol 47, 158167.Google Scholar
Mizutani, S (1977) Progressive orDering of cristobalitic silica in the early stage of diagenesis. Contrib. Minerai. Petrol. 61, 129140.Google Scholar
Murata, K.J. & Nakata, J.K. (1974) Cristobalitic stage in the diagenesis of diatomaceous shale. Science 184, 567568.Google Scholar
Oehler, J.H. (1973) Tridymite-like crystals in cristobalitic ‘cherts'. Nature Phys. Sci. 241, 6465.CrossRefGoogle Scholar
Oehler, J.H. (1976) Hydrothermal crystallization of silica gel. Geol. Soc. Am. Bull. 87, 11431152.2.0.CO;2>CrossRefGoogle Scholar
Rubio, DJ., Alvarado, A & Sampelayo, P.H. (1935) Explicación Del nuevo mapa geològico De Espana a escala 1:1 000 000. Mem. Inst. Geol. y Min. De Espana, 528 pp.Google Scholar
Shutov, V.D., Aleksandrova, A.V. & Losievskaya, S.A. (1970) Genetic interpretation of the polymorphism of the kaolinite group in sedimentary rocks. Sedimentology 15, 6982.Google Scholar
Schmidt, E.R. & Heckroodt, R.O. (1959) A dickite with an elongated crystal habit and its Dehydroxylation. Miner. Mag. 32, 314323.Google Scholar
Ubanell, A.G., Garzon, G, De LA PENA, J.A., Bustillo, A & Marfil, R (1978) Estudio De procesos De alteration hidrotermal en rocas graniticas y sedimentarias (provincia De Avila). Estudios Geol. 34, 151160.Google Scholar
Wise, S.W. & Kelts, K.M. (1972) Inferred diagenetic history of weakly silicified Deep sea chalk. Trans. Gulf Coast, Ass. Geol. Soc. 22, 117203.Google Scholar