Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T20:18:11.081Z Has data issue: false hasContentIssue false

Modelling pedogenization of zeolitized tuff: effects of water and phenolic substances on weathering rates of the Campanian Ignimbrite (yellow facies)

Published online by Cambridge University Press:  09 July 2018

E. Grilli*
Affiliation:
Seconda Università degli Studi di Napoli, Caserta, Italy
A. Colella
Affiliation:
Università di Napoli Federico II, Napoli, Italy
E. Coppola
Affiliation:
Seconda Università degli Studi di Napoli, Caserta, Italy
A. Langella
Affiliation:
Università del Sannio, Benevento, Italy
A. Buondonno
Affiliation:
Seconda Università degli Studi di Napoli, Caserta, Italy
*

Abstract

An experimental pedology research project, based on a “process-system” pedogenetic model, was initiated to investigate the weathering of Phlegraean Yellow Tuff (PYT) – the yellow facies of the Campanian Ignimbrite with phillipsite > chabazite – as representative of the parent rock material as the soil-forming factor. PYT was weathered by water (W) and tannic acid solutions (TA) at concentrations ranging from 3 × 101 to 3 × 104 μmol l–1. The most concentrated TA solution (3 × 104 μmol l–1) showed the greatest extracting efficiency. Na and K were continually solubilized by W; Al, Ca and Mg contributed to the ionic composition of all the TA supernatants. A significant dissolution of the amorphous component and an associated decrease of the zeolite content, especially phillipsite, were noted. The features of PYT weathered outcomes fitted the “process-system” model very well. PYT showed a pedogenic potential, in being prone to weathering, as well as in releasing elements of importance for plant settlement and development, such as K, Ca, Mg and Fe.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnalds, O. (2008) Andosols. Pp. 3946 in: Encyclopedia of Soil Science (Chesworth, W., editor). Springer, Dordrecht, The Netherlands.Google Scholar
Arnalds, O., Bartoli, F., Buurman, P., Σskarsson, H., Stoops, G. & García-Rodeja, E., editors (2007) Soil of Volcanic Regions in Europe. Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Bhattacharyya, T., Mandal, C. & Deshmukh, S.N. (1992) Soils and land use patterns in part of western Maharashtra. Journal of the Indian Society of Soil Science, 40, 513520.Google Scholar
Bhattacharyya, T., Pal, D.K. & Srivastava, P. (1999) Role of zeolites in persistence of high altitude ferruginous Alfisols of the humid tropical Western Ghats, India. Geoderma, 90, 263276.CrossRefGoogle Scholar
Bhattacharyya, T., Pal, D.K., Lai, S., Chandran, P & Ray, R.K. (2006) Formation and persistence of Mollisols on zeolitic Deccan basalt of humid tropical India. Geoderma, 136, 609620.CrossRefGoogle Scholar
Brantley, S.L. (2008). Kinetics of mineral dissolution. Pp. 151196 in: Kinetics of Water-Rock Interaction (Brantley, S.L., Kubicki, L.D. & White, A.F., editors). Springer, New York.CrossRefGoogle Scholar
Brantley, S.L. & Conrad, C.F. (2008). Analysis of rates of geochemical reactions. Pp. 137 in: Kinetics of Water-Rock Interaction (Brantley, S.L., Kubicki, L.D. & White, A.F., editors). Springer, New York.CrossRefGoogle Scholar
Brantley, S.L. & Stillings, L.L. (1996) Feldspar dissolution at 25°C and low pH. American Journal of Science, 296, 101127.CrossRefGoogle Scholar
Buondonno, A. & Coppola, E. (2001) Modeling soil ped formation: properties of aggregates formed by montmorillonitic clay, Al or Fe poorly-ordered oxides and polyphenol in acid milieu. Studies in Surface Science and Catalysis, 140, 87101.CrossRefGoogle Scholar
Buondonno, A., Colella, C., Coppola, E., de’ Gennaro, M. & Langella, A. (2000a) Quantitative and kinetics of K and P release from Italian zeolitized tuffs. Pp. 449458 in: Natural Zeolites for the Third Millennium (Colella, C. & Mumpton, F., editors ) E. De Frede Editore, Napoli, Italy.Google Scholar
Buondonno, A., Coppola, E., Caianiello, A., Di Sarno, I., Langella, A. & Marino, R. (2000b) Short-term effects of italian zeolitic tuffs on the availability of beneficial and toxic elements in soil. Pp. 459470 in: Natural Zeolites for the Third Millennium (Colella, C. & Mumpton, F., editors) E. De Frede Editore, Napoli, Italy.Google Scholar
Buondonno, A., Capasso, S., Colella, A., Colella, C., Coppola, E., Grilli, E., Langella, A. & Salvestrini, S. (2005) Modeling pedogenization of zeolitized tuffs. I: Effect of humic acids on early alteration and cations release. Proc. VII Conv. Nazionale sulla Scienza e Tecnologia delle Zeoliti. (Giordano, G., editor), Centro Editoriale e Librario dell'Universita della Calabria. Vol. unico, 151-154.Google Scholar
Buondonno, A., Colella, A, Colella, C., Coppola, E., de’ Gennaro, B., de’ Gennaro, B., Gargiulo, N., Grilli, E., Langella, A. & Rubino, M. (2007) Modeling pedogenization of zeolitized tuffs. II: Medium-term weathering of phlegraean yellow tuff and red tuff with black scoriae by water and humic acids. Studies in Surface Science and Catalysis, 170, 20922097.CrossRefGoogle Scholar
Buondonno, A., Colella, A., Coppola, E., de’ Gennaro, B., Grilli, E., Langella, A. & Rubino, M. (2008) Distribution of Al, Ca, Fe and Mg in weathering extracts from Campanian Ignimbrite (yellow faeies). Studies in Surface Science and Catalysis, 174, 525528.CrossRefGoogle Scholar
Camberato, J.J. & Pan, W.L. (2000) Bioavailability of calcium, magnesium and sulphur. Pp. D53—D69 in: Handbook of Soil Science (Sumner, M.E., editor). CRC Press, Boca Raton, Florida.Google Scholar
Cappelletti, P., Langella, A., Colella, A. & De Gennaro, R. (1999) Mineralogical and technical features of zeolite deposits from northern Latium volcanic district. Periodico di Mineralogia, 68, 127144.Google Scholar
Cappelletti, P., Cerri, G., Colella, A., de’ Gennaro, M., Langella, A., Perrotta, A. & Scarpati, C. (2003) Posteruptive processes in the Campanian Ignimbrite. Mineralogy and Petrology, 79, 7997.CrossRefGoogle Scholar
Castaldi, P., Santona, L., Enzo, S. & Melis, P. (2008) Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. Journal of Hazardous Materials, 156, 428434.CrossRefGoogle Scholar
Cerri, G., Langella, A., Pansini, M. & Cappelletti, P. (2002) Methods of determining cation exchange capacities for clinoptilolite-rich rocks of the Logudoro region in northern Sardinia, Italy. Clays and Clay Minerals, 50, 127135.CrossRefGoogle Scholar
Chae, G-T., Yun, S-T., Kwon, M-J., Kim, Y-S. & Mayer, B. (2006) Batch dissolution of granite and biotite in water: implication for fluorine geochemistry in groundwater. Geochemical Journal, 40, 95102.CrossRefGoogle Scholar
Chipera, S.J. & Bish, D.L. (1995) Multireflection RIR and intensity normalizations for quantitative analyses: applications to feldspar and zeolites. Powder Diffraction Journal, 10, 4755.CrossRefGoogle Scholar
Cotton, A. (2008) Dissolution kinetics of clinoptilolite and heulandite in alkaline conditions. Bioscience Horizons, 1, 3843.CrossRefGoogle Scholar
Dahlgren, R.A., Shoji, S. & Nanzyo, M. (1993) Mineralogical characteristics of volcanic ash soils. Pp. 101136 in. Volcanic Ash Soils: Genesis, Properties and Utilization (Shoji, S., Nanzyo, M. & Dahlgren, R.A., editors). Developments in Soil Science, 21. Elsevier. Amsterdam, The Netherlands.CrossRefGoogle Scholar
de’ Gennaro, B., Aprea, P., Colella, C. & Buondonno, A. (2007) Comparative ion-exchange characterization of zeolitic and clayey materials for pedotechnical applications. Part 1: Interaction with noxious cations. Journal of Porous Materials, 14, 349356.CrossRefGoogle Scholar
de’ Gennaro, B., Cappelletti, P., Langella, A., Perrotta, A. & Scarpati, C. (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidences. Contributions to Mineralogy and Petrology, 139, 1735.CrossRefGoogle Scholar
De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson, W.A., Spera, F.J. & Belkin, H.E. (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineralogy and Petrology, 73, 4765.CrossRefGoogle Scholar
Dixon, J.B. & Weed, S.B. (1989) Minerals in Soil Environments, 2nd edition, SSSA Book Series No. 1, SSSA, Madison, Wisconsin, USA.CrossRefGoogle Scholar
Drever, J.I. & Stillings, L. (1997) The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120, 167181.CrossRefGoogle Scholar
Drever, J.I. & Vance, G.F. (1994) Role of soil organic acids in mineral weathering processes. Pp. 138161 in: Organic Acids in Geological Processes (Pittman, E.D. & Lewan, M.D., editors). Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Ezzaïm, A., Turpault, M.-P. & Ranger, J. (1999a) Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France). Part I. Formation of weathered rind. Geoderma, 87, 137154.CrossRefGoogle Scholar
Ezzai'm, A., Turpault, M.-P. & Ranger, J. (1999b) Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France). Part II. Soil formation. Geoderma, 87, 155177.CrossRefGoogle Scholar
Furrer, G. & Stumm, W. (1986) The coordination chemistry of weathering: I. Dissolution kinetics of delta-Al2O3 and BeO. Geochimica et Cosmochimica Ada, 50, 18471860.CrossRefGoogle Scholar
Ganor, J., Roueff, E., Erel, Y. & Blum, J.D. (2005) The dissolution kinetics of a granite and its minerals — implications for comparison between laboratory and field dissolution rates. Geochimica et Cosmochimica Ada, 69, 607621.CrossRefGoogle Scholar
Ghiara, M.R., Petti, C., Franco, E., Lonis, R., Luxoro, S. & Gnazzo, L. (1999) Occurrence of clinoptilolite and mordenite in Tertiary calc-alkaline pyroclastites from Sardinia (Italy). Clays and Clay Minerals, 47, 319328.CrossRefGoogle Scholar
Giampaolo, C., Mengarelli, L., Torracca, E. & Spencer, C. (2008) Zeolite characterization of “Vico red tuff with black scoria” ignimbrite flow: The extractive district of Civita Castellana (Viterbo, Italy). IlNuovo Cimento B, 123, 14591476.Google Scholar
Glover, E.T., Faanu, A. & Fianko, J.R. (2010) Dissolution kinetics of stilbite at various temperatures under alkaline conditions. West Africa Journal of Applied Ecology, 16, 95105.CrossRefGoogle Scholar
Goenadi, D.H. & Tan, K.H. (1989) Mineralogy and micromorphology of soils from volcanic tuffs in the humid tropics. Soil Science Society of America Journal, 53, 19071911.CrossRefGoogle Scholar
Hamilton, J.P., Pantano, C.G. & Brantley, S.L. (2000) Dissolution rates of albite crystal and glass. Geochimica et Cosmochimica Ada, 64, 26032615.CrossRefGoogle Scholar
Hamilton, J.P., Brantley, S.L., Pantano, C.G., Criscenti, L. & Kubicki, J.D. (2001) Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution. Geochimica et Cosmochimica Ada, 65, 36833702.CrossRefGoogle Scholar
Hartman, R.L. & Scott Fogler, H. (2005) Reaction kinetics and mechanisms of zeolite dissolution in hydrochloric acid. Industrial & Engineering Chemistry Research, 44 (20), 7738 -7745.CrossRefGoogle Scholar
Hartman, R.L. & Scott Fogler, H. (2007) Understanding the dissolution of zeolites. Langmuir, 23, 54775484.CrossRefGoogle ScholarPubMed
Hausrath, E.M., Neaman, A. & Brantley, S.L. (2009) Elemental release rates from dissolving basalt and granite with and without organic ligands. American Journal of Science, 309, 633660.CrossRefGoogle Scholar
Hoosbek, M.R., Amundson, R.G. & Bryant, R.B. (2000) Pedological modeling. Pp. E77—E116 in: Handbook of Soil Science (Sumner, M.E., editor). CRC Press, Boca Raton, Florida, USA.Google Scholar
Huang, W.H. & Keller, W.D. (1970) Dissolution of rockforming silicate minerals in organic acids: simulated first-stage weathering of fresh mineral surfaces. American Mineralogist, 55, 20762094.Google Scholar
Huang, W.H. & Keller, W.D. (1971) Dissolution of clay minerals in diluite organic acids at room temperature. American Mineralogist, 56, 10821095.Google Scholar
Huang, W.H. & Keller, W.D. (1972) Organic acids as agent of chemical weathering of silicate minerals. Nature: Physical Science, 239, 149151.Google Scholar
Huertas, F.J., Chou, L. & Wollast, R. (1998) Mechanism of kaolinite dissolution at room temperature and pressure. Part I: Surface speciation. Geochimica et Cosmochimica Ada, 62, 417431.CrossRefGoogle Scholar
Huertas, F.J., Chou, L. & Wollast, R. (1999) Mechanism of kaolinite dissolution at room temperature and pressure. Part II: Kinetic study. Geochimica et Cosmochimica Acta, 63, 32613275.CrossRefGoogle Scholar
Kimble, J.M., Ping, C.L., Sumner, M.E. & Wilding, L.P. (2000) Andisols. Pp. E209E224 in: Handbook of Soil Science (Sumner, M.E., editor). CRC Press, Boca Raton, Florida, USA.Google Scholar
Kodama, H. & Schnitzer, M. (1973) Dissolution of chlorite minerals by fulvic acid. Canadian Journal of Soil Science, 53, 240243.CrossRefGoogle Scholar
Langella, A., Cappelletti, P., Cerri, G., Bish, D.L. & de', Gennaro M. (1999) Distribution of industrial minerals in Sardinia (Italy): clinoptilolite-bearing rocks of the Logudoro region. Pp. 237252 in: Natural Microporous Materials in the Environmental Technology, E362. Kluwer Academic Publishers.CrossRefGoogle Scholar
Li, J., Xu, R., Tiwari, D. & Ji, G. (2006) Effect of lowmolecular- weight organic acids on the distribution of mobilized Al between soil solution and solid phase. Applied Geochemistry, 21, 17501759.CrossRefGoogle Scholar
Lorenzoni, P., Raglione, M., Quantin, P., Bidini, D. & Lulli, L. (1985) Studio pedologico dell’ apparato vulcanico di Vico. IV. I suoli delle colate piroclastiche. Annali Istituto Speriemntale per lo Studio e la Difesa del Suolo, 16, 199226.Google Scholar
Lulli, L. & Bidini, D. (1980) A climosequence of soils from tuffs on slopes of an extinct volcano in southern Italy. Geoderma, 24, 129142.CrossRefGoogle Scholar
Mengel, K. & Kirkby, E.A. (1987). Principles of Plant Nutrition, 4th edition. International Potash Institute Ed., Bern.Google Scholar
Neaman, A., Chorover, J. & Brantley, S.L. (2005) Implications of the evolution of organic acid moieties for basalt weathering over geological Time. American Journal of Science, 305, 147185.CrossRefGoogle Scholar
Neaman, A., Chorover, J. & Brantley, S.L. (2006) Effects of organic ligands on granite dissolution in Batch experiments at pH 6. American Journal of Science, 306, 451473.CrossRefGoogle Scholar
Oelkers, E.H., Schott, J. & Devidal, J.-L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica et Cosmochimica Acta, 58, 20112024.CrossRefGoogle Scholar
Oertly, J.J. (2008) Plant nutrients. Pp. 560570 in: Encyclopedia of Soil Science (Chesworth, W., editor). Springer, Dordrecht, The Netherlands.Google Scholar
Rubino, M., Coppola, E., Benedetti, A., Dazzi, C., Odierna, P., Previtali, F., Vacca, S. & Buondonno, A. (2006) Water-soluble and humus-like polyphenols in soil profiles from Mediterranean pedoclimatic environments. Pp. 365366 in: Polyphenols Communications 2006. XXIII International Conference on Polyphenols (Daayf, F., El Hadrami, A., Adam, L. and Ballance, G.M., editors). Winnipeg, Manitoba, Canada, 22-25th August 2006.Google Scholar
Schaetzl, R.J. & Anderson, S. (2005) Soils: Genesis and Geomorpholgy. Cambridge University Press, New York, USA.CrossRefGoogle Scholar
Shoji, S. & Takahashi, T. (2002) Environmental and agricultural significance of volcanic ash soils. Global Environmental Research, 6, 113135.Google Scholar
Silber, A., Bar-Yosef, B. & Chen, Y. (1999) pHdependent kinetics of tuff dissolution. Geoderma, 93, 125140.CrossRefGoogle Scholar
Smeck, N.E., Runge, E.C.A & Mackintosh, E.E. (1983) Dynamics and genetic modelling of soil system. Pp. 5181 in: Pedogenesis and soil taxonomy. I. Concepts and Interactions (Wilding, L.P., Smeck, N.E. & Hall, G.F., editors). Elsevier Science Publishers B.V., Amsterdam, The Netherlands.CrossRefGoogle Scholar
Stidson, R.T., Hamilton-Taylor, J. & Tipping, E. (2002) Laboratory dissolution studies of rocks from the Borrowdale Volcanic Group (English Lake District). Water, Air, and Soil Pollution, 138, 335358.CrossRefGoogle Scholar
Stillings, L.L. & Brantley, S.L. (1995) Feldspar dissolution at 25°C and pH 3: reaction stoichiometry and the effect of cations. Geochimica et Cosmochimica Acta, 59, 14831496.CrossRefGoogle Scholar
Stumm, W., Furrer, G., Wieland, E. & Zinder, B. (1985) The effects of complex-forming ligands on the dissolution of oxides and aluminosilicates. Pp. 5574 in: The Chemistry of Weathering (Drever, J.I., editor). Dordrecht: D. Reidel Publishing Co. CrossRefGoogle Scholar
Tazaki, K. (2006) Green-tuff landslide areas are beneficial for rice nutrition in Japan. Anais da Academia Brasileira de Ciencias, 78, 749763.CrossRefGoogle ScholarPubMed
USDA-NRCS (1999) Soil Survey Staff - United States Department of Agriculture. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd edition, Agriculture Handbook no. 436, U.S.D.A., Natural Resources Conservation Service, New York, USA.Google Scholar
Van Hees, P.A.W., Lundstrom, U.S. & Mörth, C.-M. (2002) Dissolution of microcline and labradorite in a forest O horizon extract: the effect of naturally occurring organic acids. Chemical Geology, 189, 199211.CrossRefGoogle Scholar
Wan, H., Zou, Q., Yan, R., Zhao, F. & Zeng, B. (2007) Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchimica Acta, 159, 109115.CrossRefGoogle Scholar
Warkentin, B.P. (2006) Footprints in the Soil. People and Ideas in Soil History. Elsevier, Amsterdam, The Netherlands.Google Scholar
White, A.F. & Brantley, S.L. (1995) Chemical Weathering Rates of Silicate Minerals. Mineralogical Society of America Short Course, 31, 119172.Google Scholar
Zakharikhina, L.V. & Litvinenko, Y.S. (2008) The role of volcanic ash in formation of soil and vegetative cover in the present-day explosive volcanism area. Journal of Volcanology and Seismology, 2, 16-29.Google Scholar
Zhang, H. & Bloom, P.R. (1999) Dissolution kinetics of hornblende in organic acid solutions. Soli Science Society of America Journal, 63, 815822 CrossRefGoogle Scholar
Zhang, H., Bloom, P.R., Nater, E.A. & Erich, M.S. (1996) Rates and stoichiometry of horneblende dissolution over 115 days of laboratory weathering at pH 3.6–4.0 and 25°C in 0.01 M lithium acetate. Geochimica et Cosmochimica Ada, 60, 941950.CrossRefGoogle Scholar