Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T19:28:47.111Z Has data issue: false hasContentIssue false

[MnO|SiO2,Al2O3,FeO,MgO] balanced log-ratio in chlorites: a tool for chemo-stratigraphic mapping and proxy for the depositional environment

Published online by Cambridge University Press:  13 August 2018

Annette Süssenberger*
Affiliation:
Department of Earth Sciences, University of Geneva, 13 Rue des Maraîchers, 1205 Geneva, Switzerland
Solveig Pospiech
Affiliation:
Geoscience Center, University of Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
Susanne Theodora Schmidt
Affiliation:
Department of Earth Sciences, University of Geneva, 13 Rue des Maraîchers, 1205 Geneva, Switzerland
*

Abstract

The [MnO|SiO2,Al2O3,FeO,MgO] balanced ratio (i.e. the isometric log-ratio of the MnO concentration relative to the concentration of SiO2, Al2O3, FeO and MgO) of chlorite and of whole-rock composition is an effective discriminant between Mesozoic stratigraphic formations in the Magallanes Basin (Chile). The MnO content in chlorite is only controlled by the host rock chemistry and is dependent on the geological environment. The MnO content in chlorite remains unchanged at low-grade metamorphic conditions. Single-grain chlorite analysis (n = 1042, electron microprobe) and whole-rock analysis (n = 40, X-ray fluorescence) were used to discriminate stratigraphic formations and to decipher differences in the depositional environment in the Magallanes Basin. The samples are from one Upper Jurassic and three Cretaceous sedimentary units that were affected either by low-grade regional metamorphism or by Miocene contact metamorphism. The highest [MnO|SiO2,Al2O3,FeO,MgO] values are recorded in the upper Zapata Formation. The Punta Barrosa, Cerro Toro and Tobífera Formations show slightly lower [MnO|SiO2,Al2O3,FeO,MgO] values. Elevated [MnO|SiO2,Al2O3,FeO,MgO] values at the transition between Zapata and Punta Barrosa Formations record an oxygenated shallow marine environment that can be linked to the closure of the Rocas Verdes Basin and the onset of fold-and-thrust belt formation. Decreasing [MnO|SiO2,Al2O3,FeO,MgO] values from the Punta Barrosa towards the Cerro Toro Formation indicate gradually increasing water depths during the Upper Cretaceous that correlate well with the global sea level.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented during the session: ‘MI-04 Diversity of Chlorites’ of the International Clay Conference 2017.

Guest Associate Editor: S. Inoue

References

REFERENCES

Aitchison, J. (1986) The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. Chapman & Hall, London, UK.Google Scholar
Aitchison, J. & Greenacre, M.J. (2002) Biplots of compositional data. Journal of the Royal Statistical Society: Series C. Applied Statistics, 51, 375392.Google Scholar
Aller, R.C. (1980) Diagenetic processes near the sediment–water interface of Long Island Sound: II. Fe and Mn. Advances in Geophysics, 22, 351415.Google Scholar
Bernhardt, A., Jobe, Z.R., Grove, M. & Lowe, D.R. (2012) Palaeogeography and diachronous infill of an ancient deep-marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes Basin. Basin Research, 24, 269294.Google Scholar
Bevins, R., Robinson, D. & Rowbotham, G. (1991) Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. Journal of Metamorphic Geology, 9, 711721.Google Scholar
Biddle, K.T., Uliana, M.A., Mitchum, R.M., Fitzgerald, M.G. & Wright, R.C. (1986) The stratigraphic and structural evolution of the central and eastern Magallanes Basin, South America. Pp. 4161 in: Foreland Basins (Allen, P.A. & Homewood, P., editors). Blackwell Scientific Publications, Oxford, UK.Google Scholar
Bodner, R. (2013) Metamorphism and kinetics in the Torres del Paine contact aureole. PhD thesis, University of Lausanne, Lausanne, Switzerland.Google Scholar
Bourdelle, F. & Cathelineau, M. (2015) Low-temperature chlorite geothermometry: a graphical representation based on a TR 2+–Si diagram. European Journal of Mineralogy, 27, 617626.Google Scholar
Bourdelle, F., Parra, T., Beyssac, O., Chopin, C. & Vidal, O. (2013) Clay minerals as geo-thermometer: a comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, U.S.A.). American Mineralogist, 98, 914926.Google Scholar
Bricker, O. (1965) Some stability relations in the system Mn–O2–H2O at 25° and one atmosphere total pressure. American Mineralogist, 50, 12961354.Google Scholar
Bruhn, R.L., Stern, C.R. & de Wit, M.J. (1978) Field and geochemical data bearing on the development of a Mesozoic volcano-tectonic rift zone and back-arc basin in southernmost South America. Earth and Planetary Science Letters, 41, 3246.Google Scholar
Buccianti, A. & Grunsky, E. (2014) Compositional data analysis in geochemistry: are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 15.Google Scholar
Buccianti, A., Mateu-Figueras, G. & Glahn, V.P. (editors) (2006) Compositional Data Analysis in the Geosciences: From Theory to Practice, Special Publication 264. Geological Society, London, UK.Google Scholar
Burdige, D.J. (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Science Reviews, 35, 249284.Google Scholar
Butler, I.B. & Rickard, D. (2000) Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64, 26652672.Google Scholar
Calvert, S.E. & Pedersen, T.F. (1996) Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. Economic Geology, 91, 3647.Google Scholar
Calvert, S.E. & Pedersen, T.F. (2007) Elemental proxies for Palaeoclimatic and Palaeoceanographic variability in marine sediments: interpretation and application. Pp. 567644 in: Proxies in Late Cenozoic Paleoceanography (Hillaire-Marcel, C. & De Vernal, A., editors). Elsevier, AmsterdamGoogle Scholar
Cathelineau, M. & Nieva, D. (1985) A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology, 91, 235244.Google Scholar
Cecioni, G.O. (1957) Cretaceous flysch and molasse in Departamento Ultima Esperanza, Magallanes Province, Chile. American Association of Petroleum Geologists, 41, 538564.Google Scholar
Chinchilla, D., Arroyo, X., Merinero, R., Piña, R., Nieto, F., Ortega, L. & Lunar, R. (2016) Chlorite geothermometry applied to massive and oscillatory-zoned radiated Mn-rich chlorites in the Patricia Zn–Pb–Ag epithermal deposit (NE, Chile). Applied Clay Science, 134, 210220.Google Scholar
Cortés, R. (1964) Estratigrafía y un estudio de paleocomentes del flysch Cretáceo del Depto. De Ultima Esperanza. PhD thesis, University Técnico del Estado, Santiago, Chile.Google Scholar
Dalziel, I. (1981) Back-arc extension in the southern Andes: a review and critical reappraisal. Philosophical Transactions of the Royal Society London, 300, 319-335.Google Scholar
Dalziel, I., de Wit, M. & Palmer, K. (1974) Fossil marginal basin in the southern Andes. Nature, 250, 291294.Google Scholar
Daniels, B.G., Auchter, N.C., Hubbard, S.M., Romans, B.W., Matthews, W.A. & Stright, L. (2017) Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile. GSA Bulletin, 130, 438-454.Google Scholar
Dowle, M. & Srinivasan, A. (2017) data.table: Extension of ’data.frame’: https://CRAN.R-project.org/package=data.table.Google Scholar
Egozcue, J.J. & Pawlowsky-Glahn, V. (2005) Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37, 795828.Google Scholar
Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. (2003) Initiation of the Magallanes foreland basin: timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 10811084.Google Scholar
Fildani, A. & Hessler, A.M. (2005) Stratigraphic record across a retroarc basin inversion: Rocas Verdes–Magallanes Basin, Patagonian Andes, Chile. Geological Society of America Bulletin, 117, 15961614.Google Scholar
Filzmoser, P., Hron, K. & Reimann, C. (2009) Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Science of the Total Environment, 407, 61006108.Google Scholar
Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderon, M. & Graham, S.A. (2011) Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51 30′S. Geological Society of America Bulletin, 123, 16791698.Google Scholar
Frey, M. & Robinson, D., editors (1999) Low-Grade Metamorphism. Blackwell Science Ltd, Oxford, UK.Google Scholar
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suhoxic diagenesis. Geochimica et Cosmochimica Acta, 43, 10751090.Google Scholar
Gabriel, K.R. (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453467.Google Scholar
Gieskes, J.M. (1981) Deep-sea drilling interstitial water studies: implications for chemical alteration of the oceanic crust, layers I and II. The Society of Economic Paleontologists and Mineralogists, 32, 149167.Google Scholar
Greenacre, M.J., editor (2010) Biplots in Practice. Fundacion BBVA, Bilbao, Spain.Google Scholar
Greenacre, M.J. (2013) Contribution biplots. Journal of Computational and Graphical Statistics, 22, 107122.Google Scholar
Guidotti, C.V., Cheney, J.T. & Henry, D.J. (1988) Compositional variation of biotites as a function of metamorphic reactions and mineral assemblage in the pelitic schists of western Maine. American Journal of Science, 288, 270292.Google Scholar
Gust, D.A., Biddle, K.T., Phelps, D.W. & Uliana, M.A. (1985) Associated middle to late Jurassic volcanism and extension in southern South America. Tectonophysics, 116, 223253.Google Scholar
Hålenius, U. (1984) The crystal field spectra of Mn3+ in chlorite. Geologiska Föreningen i Stockholm Förhandlingar, 106, 5157.Google Scholar
Hem, J.D. (1972) Chemical factors that influence the availability of iron and manganese in aqueous systems. GSA Bulletin, 83, 443450.Google Scholar
Higashi, S., Miki, H. & Komarneni, S. (2007) Mn-smectites: hydrothermal synthesis and characterization. Applied Clay Science, 38, 104112.Google Scholar
Inoue, A., Meunier, A., Patrier-Mas, P., Rigault, C., Beaufort, D. & Vieillard, P. (2009) Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays and Clay Minerals, 57, 371382.Google Scholar
Katz, H.R. (1963) Revision of Cretaceous stratigraphy in Patagonian Cordillera of Ultima Esperanza, Magallanes Province, Chile. American Association of Petroleum Geologists, 47, 506524.Google Scholar
Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R. (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Research, 20, 211226.Google Scholar
Kranidiotis, P. & MacLean, W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82, 18981911.Google Scholar
Krishnaswami, S. (1976) Authigenic transition elements in Pacific pelagic clays. Geochimica et Cosmochimica Acta, 40, 425434.Google Scholar
Lanari, P., Wagner, T. & Vidal, O. (2014) A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to P–T sections and geothermometry. Contributions to Mineralogy and Petrology, 167, 119.Google Scholar
Leuthold, J., Müntener, O., Baumgartner, L.P., Putlitz, B., Ovtcharova, M. & Schaltegger, U. (2012) Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia). Earth and Planetary Science Letters, 325–326, 8592.Google Scholar
Middelburg, J.J., de Lange, G.J. & van der Weijden, C.H. (1987) Manganese solubility control in marine pore waters. Geochimica et Cosmochimica Acta, 51, 759763.Google Scholar
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N. & Pekar, S.F. (2005) The Phanerozoic record of global sea-level change. Science, 310, 12931298.Google Scholar
Murray, J.W. & Irvine, R. (1985) On the manganese oxides and manganese nodules in marine deposits. Transactions – Royal Society of Edinburgh, 37, 721742.Google Scholar
Natland, M.L., Gonzalez, E.P., Canon, A. & Ernst, M. (1974) A system of stages for correlation of Magallanes Basin sediments. Geological Society of America Memoirs, 139, 1126.Google Scholar
Nealson, K.H. & Saffarini, D. (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology and regulation. Annual Review of Microbiology, 48, 311343.Google Scholar
Ossa Ossa, F., Hofmann, A., Vidal, O., Kramers, J.D., Belyanin, G. & Cavalazzi, B. (2016) Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambrian Research, 281, 414433.Google Scholar
Pankhurst, R.J., Riley, T.R., Fanning, C.M. & Kelly, S.P. (2000) Episodic silicic volcanism in Patagonia and the Antarctic peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology, 41, 605625.Google Scholar
Parent, S.-É., Parent, L.E., Egozcue, J.J., Rozane, D.-E., Hernandes, A., Lapointe, L., Hébert-Gentile, V., Naess, K., Marchand, S., Lafond, J., Mattos, D., Barlow, P. & Natale, W. (2013) The plant ionome revisited by the nutrient balance concept. Frontiers in Plant Science, 4, 110.Google Scholar
Pawlowsky-Glahn, V. & Egozcue, J.J. (2006) Compositional data and their analysis: an introduction. Pp. 110 in: Compositional Data Analysis in the Geosciences (Buccianti, A., Mateu-Figueras, G. & Pawlowsky-Glahn, V., editors). Special Publications, 264, Geological Society, London.Google Scholar
Pospiech, S. & Fahlbusch, W. (2017) Ratios: Ratios between Two Data Sets and Correction for Adhering Particles on Plants: https://CRAN.R-project.org/package=ratios.Google Scholar
Pufahl, P.K. & Fralick, P.W. (2004) Depositional controls on Palaeoproterozoic iron formation accumulation, Gogebic Range, Lake Superior region, USA. Sedimentology, 51, 791808.Google Scholar
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna, Austria: www.R-project.org.Google Scholar
Schmidt, S. & Robinson, D. (1997) Metamorphic grade and porosity and permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North Shore Volcanic Group, Minnesota. Geological Society of America Bulletin, 109, 683697.Google Scholar
Schwartz, T.M., Fosdick, J.C. & Graham, S.A. (2017) Using detrital zircon U–Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes-Austral basin, Patagonia. Basin Research, 29, 725-746.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 32, 751767.Google Scholar
Spencer, D.W. & Brewer, P.G. (1971) Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. Journal of Geophysical Research, 76, 58775892.Google Scholar
Stern, C.R. & de Wit, M.J., editors (2003) Rocas Verdes Ophiolites, Southernmost South America: Remnants of Progressive Stages of Development of Oceanic-Type Crust in a Continental Margin Back-Arc Basin. Geological Society, London, UK.Google Scholar
Stinnesbeck, W., Frey, E., Rivas, L., Perez, J.P., Cartes, M.L., Soto, C.S. & Lobos, P.Z. (2014) A Lower Cretaceous ichthyosaur graveyard in deep marine slope channel deposits at Torres del Paine National Park, southern Chile. Geological Society of America Bulletin, 126, 13171339.Google Scholar
Suess, E. (1980) Particulate organic carbon flux in the ocean-surface productivity and oxygen utilization. Nature, 288, 260263.Google Scholar
Süssenberger, A. (2018) Contact and regional thermal evolution of the Cretaceous sedimentary sequence in the Patagonian fold-and-thrust belt/Magallanes foreland basin (51°S, Chile). PhD thesis, University of Geneva, Geneva, Switzerland.Google Scholar
Süssenberger, A., Schmidt, S., Wemmer, K., Baumgartner, L. & Grobéty, B. (2017) Timing and thermal evolution of fold-and-thrust belt formation in the Ultima Esperanza District, 51°S Chile: constraints from K–Ar dating and illite characterization. Geological Society of America Bulletin, 130, 975998.Google Scholar
Süssenberger, A., Wemmer, K. & Schmidt, S.Th. (2018) The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting. Applied Clay Science, 165, 5263.Google Scholar
Thompson, J. & Thompson, A. (1976) A model system for mineral facies in pelitic schists. Contributions to Mineralogy and Petrology, 58, 243277.Google Scholar
Tobler, L. (2012) Etude métamorphique et structurale de la région Sud-Est du Parc national du Torres del Paine, Chili. Master's thesis, University of Lausanne, Lausanne, Switzerland.Google Scholar
Trincal, V. & Lanari, P. (2016) Al-free di-trioctahedral substitution in chlorite and a ferri-sudoite end-member. Clay Minerals, 51, 675689.Google Scholar
van den Boogaart, K.G. & Tolosana-Delgado, R. (2008) A unified R package to analyze compositional data. Computers & Geosciences, 34, 320338.Google Scholar
Vidal, O., Parra, T. & Trotet, F. (2001) A thermodynamic model for Fe–Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°C, 1 to 25 kb range. American Journal of Science, 301, 557592.Google Scholar
Vidal, O., Parra, T. & Vieillard, P. (2005) Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation. American Mineralogist, 90, 347358.Google Scholar
Vidal, O., de Andrade, V., Lewin, E., Munoz, M., Parra, T. & Pascarelli, S. (2006) P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). Journal of Metamorphic Geology, 24, 669683.Google Scholar
Wickham, H. (2009) ggplot2. Elegant Graphics for Data Analysis. Springer, New York.Google Scholar
Wiewióra, A. & Weiss, Z. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals, 25, 8392.Google Scholar
Wilson, T.J. (1991) Transition from back-arc to foreland basin development in the southernmost Andes. Stratigraphic record from the Ultima Esperanza District, Chile. Geological Society of America Bulletin, 103, 98111.Google Scholar
Xie, X., Byerly, G. & Ferrell, R. (1997) IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contributions to Mineralogy and Petrology, 126, 275291.Google Scholar
Supplementary material: File

Süssenberger et al. supplementary material

Süssenberger et al. supplementary material 1

Download Süssenberger et al. supplementary material(File)
File 271.2 KB