Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T00:07:54.446Z Has data issue: false hasContentIssue false

Mixed-layer mica-chlorite in very low-grade metaclastites from the Malàguide Complex (Betic Cordilleras, Spain)

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz*
Affiliation:
Departamento de Química Inorgànica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Màlaga, 29071 Màlaga, Spain
*

Abstract

Mixed-layered phyllosilicates with composition intermediate between mica and chlorite were identified in very low-grade metaclastites from the Malàguide Complex (Betic Cordilleras, Spain), and studied by X-ray diffraction, and transmission and analytical electron microscopy. They occur both as small grains in the rock matrix, and associated with muscovitechlorite stacks. Transmission electron microscope observations revealed a transition from chlorite to ordered 1:1 interstratifications through complex 1:2 and 1:3 interstratifications. Analytical electron microscopy data indicate a composition slightly different from the sum of discrete trioctahedral chlorite and dioctahedral mica. The types of layer transitions suggest that mixed-layer formation included two main processes: (1) the replacement of a brucite sheet by a cation sheet in the chlorite structure; and (2) the precipitation of mica-like layers between the chlorite layers. The strongest diffraction lines in oriented X-ray patterns are: 12.60 Å (002), 7.98 Å (003), 4.82 Å (005) and 3.48 Å (007).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-toillite transition. Clays Clay Miner. 34, 165–179.Google Scholar
Ahn, J.H., Peacor, D.R. & Douglas, S.C. (1988) Formation mechanisms of illite, chlorite and mixed-layer illite/ chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zeland. Contrib. Mineral. Petrol. 99, 82–89.CrossRefGoogle Scholar
Azèma, J. (1961) Etude géologique des abords de Málaga (Espagne). Estudios Geol. 17, 131–160.Google Scholar
Bailey, S.W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals. Am. Miner. 65, 1–7.Google Scholar
Beutner, E.C. (1978) Slaty clevage and related strain in Martinsburg slate. Delaware Water Cap, New Jersey. Am. J. Sci. 278, 1–23.Google Scholar
Craig, J., Fitches, W.R. & Maltman, A.J. (1982) Chloritemica stacks in low-strain rocks from central Wales. Geol. Mag. 119, 243–256.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1962) Sheet Silicates. Pp. 132–163 in: Rock-Forming Minerals. J. Wiley & Sons, New York.Google Scholar
Díaz de Federico, A., Torres Roldán, R. & Puga, E. (1990) The rock series of the Betic substratum. Pp 12–13, 19–29 in: Le Bassin Néogène du Domain Bétique Oriental. Document et Travaux, IGAL, Paris.Google Scholar
Dimberline, A.J. (1986) Electron microscope and microprobe analysis of chlorite-mica stacks in the Wenlock turbidites, mid Wales, U.K. Geol. Mag. 123, 299–306.CrossRefGoogle Scholar
Eggleton, R.A. & Banfield, J.F. (1985) The alteration of granitic biotite to chlorite. Am. Miner. 70, 902–910.Google Scholar
Francescelli, M., Mellini, M., Memmi, I. & Ricci, C.A. (1986) Fine-scale chlorite-muscovite association in low-grade metapelites from Nurra (NW Sardinia), and the possible misidentification of metamorphic vermiculite. Contrib. Mineral. Petrol. 93, 137–143.Google Scholar
Giorgetti, G., Memmi, I. & Nieto, F. (1997) Microstructures of intergrown phyllosilicate grains from Verrucano metasediments (Northern Apennines, Italy). Contrib. Mineral. Petrol. 128, 127–138.CrossRefGoogle Scholar
Hower, J., Eslinger, E., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments. 1: Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725–737.2.0.CO;2>CrossRefGoogle Scholar
Iijima, S. & Zhu, J. (1982) Electron microscopy of a muscovit e- biotit e interf ace. Am. Miner. 67, 1195–1205.Google Scholar
Jiang, W.-T. & Peacor, D.R. (1994) Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low grade pelitic rocks. J. Met. Geol. 12, 867–884.CrossRefGoogle Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Met. Geol. 9, 665–670.CrossRefGoogle Scholar
Lee, J.H. & Peacor, D.R. (1985) Ordered 1:1 interstratification of illite and chlorite: a transmission and analytical electron microscopy study. Clays Clay Miner. 33, 463–467.CrossRefGoogle Scholar
Lee, J.H., Peacor, D.R., Lewis, D.D. & Wintsch, R.P. (1984) Chlorite-illite/muscovite interlayered and interstr atified crystal s: a TEM/STEM study. Contrib. Mineral. Petrol. 88, 372–385.CrossRefGoogle Scholar
MacEwan, D.M.C., Ruiz Amil, A. & Brown, G. (1961) Interstratified clay minerals. Pp. 393–445 in: The X-ray Identification and Crystal Structures of Clay Minerals (Brown, G., editor). Mineralogical Society, London.Google Scholar
Mäkel, G.H. (1985) The geology of the Maláguide Complex and its bearing on the geodynamic evolution of the Betic-Rif orogen (Southern Spain and northern Morocco). GUA Papers of Geology, 22, 263 p.Google Scholar
Milodowski, A.E. & Zalasiewicz, J.A. (1991) The origin and sedimentary, diagenetic and metamorphic evolution of chlorite-mica stacks in Llandovery sediments of Central Wales. U.K. Geol. Mag. 128, 263–278.CrossRefGoogle Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega Huertas, M. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contrib. Mineral. Petrol. 115, 243–252.CrossRefGoogle Scholar
Olives, B.J., Amouric, M., de Fouquet, C. & Baronnet, A. (1983) Interlayering and interlayer slip in biotite as seem by HRTM. Am. Miner. 68, 754–758.Google Scholar
Jr.Reynolds, R.C., (1980) Interstratified clay minerals. Pp. 229–303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Jr.Reynolds, R.C., (1988) Mixed-layer chlorite minerals. Pp. 601–629 in. Hydrous Phyllosilicates (Bailey, S.W. editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Ruiz Cruz, M.D. (1997) Chlorite with anomalous chemistry and opt ical propertie s from the Maláguide Complex (Betic Cordilleras, Spain). Canad. Miner. 35, 923–935.Google Scholar
Ruiz Cruz, M.D. (1999) New data for metamorphic vermiculite. Eur. J. Miner. 11, 533–548.Google Scholar
Ruiz Cruz, M.D. & Andreo, B. (1996a) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Miner. 31, 133–152.CrossRefGoogle Scholar
Ruiz Cruz, M.D. & Andreo, B. (1996b) Tosudite in very low-grade metamorphi c greywackes from the Málaga area (Betic Cordilleras, Spain). Eur. J. Miner. 8, 1391–1399.Google Scholar
Schultz, L.G. (1964) Qantitative interpretation of mineralogical data for Pierre Shale. U.S. Geol. Surv. Prof. Paper, 391-C, 31 p.Google Scholar
Veblen, D.R. (1983) Microstructures and mixed-layering in intergrown wonesite, chlorite, talc, biotite, and kaolinite. Am. Miner. 68, 566–580.Google Scholar
Veblen, D.R. & Ferry, J.M. (1983) A TEM study of the biotite-chlorite reaction and comparison with petrologic observations. Am. Miner. 68, 1160–1168.Google Scholar
Velde, B. (1978) High temperature or metamorphic vermiculites. Contrib. Mineral. Petrol. 66, 319–323.CrossRefGoogle Scholar
Velde, B. (1984) Electron microprobe analysis of clay minerals. Clay Miner., 19, 243–247.CrossRefGoogle Scholar
Vila, E. & Ruiz Amil, A. (1988) Computer program for analysing interstratified structures by Fourier transform methods. Powder Diffraction, 3, 7–11.CrossRefGoogle Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standarization and calibration of clay mineral crystallinity and crystallite size data. J. Met. Geol. 12, 141–152.CrossRefGoogle Scholar
Weaver, C.E. & Beck, K.C. (1971) Clay-water diagenesis during burial: how mud becomes gneiss. Geol. Soc. Am. Spec. Paper, 134, 96 p.Google Scholar
Yardley, B.W.D. (1989) Metamorphism of pelitic rocks. Pp. 61–90 in: An Introduction to Metamorphic Petrology. Longman Scientific and Technical, Harlow, Essex, UK.Google Scholar
Yau, Y.C. & Peacor, D.R. (1987) Smectite-to-illite reactions in Salton Sea shales: a transmission and analytical electron microscopy study. J. Sed. Pet. 57, 335–343.Google Scholar
Yau, Y.C., Anivitz, L.M., Essene, E.J. & Peacor, E.J. (1984) Phlogopite-chlorite reaction during retrograde reaction in the Marble Formation, Franklin, New Jersey. Contrib. Mineral. Petrol. 88, 299–308.CrossRefGoogle Scholar