Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:56:41.720Z Has data issue: false hasContentIssue false

Mineralogical and physicochemical characterization of a natural bleaching earth containing sepiolite suitable for fast filtration and bioseparation

Published online by Cambridge University Press:  09 July 2018

K. Emmerich*
Affiliation:
Competence Center for Material Moisture, Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Institute for Functional Interfaces (IFG), Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
A. Steudel
Affiliation:
Competence Center for Material Moisture, Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Institute for Functional Interfaces (IFG), Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
R. Schuhmann
Affiliation:
Competence Center for Material Moisture, Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Institute for Functional Interfaces (IFG), Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
P. G. Weidler
Affiliation:
Institute for Functional Interfaces (IFG), Karlsruhe Institute for Technology, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
F. Ruf
Affiliation:
SÜD-CHEMIE AG, Ostenrieder Str. 15, 85368 Moosburg, Germany
U. Sohling
Affiliation:
SÜD-CHEMIE AG, Ostenrieder Str. 15, 85368 Moosburg, Germany
*

Abstract

A clay from the Mediterranean area classified as natural bleaching earth was comprehensively characterized and the quantitative phase content was determined. Morphology and surface characteristics were determined by environmental scanning electron microscopy (ESEM) and nitrogen adsorption. The BET surface area was >200 m2 g–1 and the average mesopore diameter was >10 nm. Thus the clay is suitable for bioseparation of larger proteins. X-ray diffraction (XRD), X-ray fluorescence (XRF), cation exchange capacity (CEC), layer charge measurement and simultaneous thermal analysis (STA) were used for mineralogical characterization. Determination of the phase content by Rietveld analysis was possible only after Sr2+ saturation, while Rietveld analysis of XRD patterns from Na+-saturated clay resulted in a strong overestimation of the amorphous content and masking of the sepiolite. The clay consists of sepiolite, dioctahedral smectite with high layer charge and low stack height, X-ray amorphous matter (probably mainly SiO2) and accessory feldspars.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockisch, M. (1998) Chapter 7.3 in: Bleaching Fats and Oils Handbook. AOCS Press, Champaign, Illinois, USA.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.Google Scholar
Christidis, G.E., Scott, P.W. & Dunham, A.C. (1997) Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Applied Clay Science, 12, 329347.Google Scholar
Galan, E. (1996) Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31, 443453.Google Scholar
Griffith, J. (1990) Acid activated bleaching clays — what's cooking in the oil industry. Industrial Minerals, 276, 5567.Google Scholar
Hagel, L. (1998) Gel filtration. Pp. 79144 in: Protein Purification, Principles. High-Resolution Methods, and Applications (Janson, J.-C. & Rydén, L., editors) Wiley-VCH, Weinheim.Google Scholar
Jones, B.F. & Galan, E. (1991) Sepiolite and palygorskite. Pp. 631674 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C. Google Scholar
Kaufhold, S. (2001) Untersuchung zur Eignung von natürlich alterierten sowie mit Oxalsäure aktivierten Bentoniten als Bleicherde für Pflanzenöle. Ph.D. Thesis, Fakultät für Bergbau, Hiittenwesen und Geowissenschaften, RWTH Aachen.Google Scholar
Kaufhold, S. (2006) Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites. Applied Clay Science, 34, 1421.CrossRefGoogle Scholar
Kleeberg, R. & Bergmann, J. (2002) Quantitative phase analysis using the Rietveld method and a fundamental parameter approach. Pp. 6376 in: Proceedings of the 2nd International School on Powder diffraction (SenGupta, S.P. & Chatterjee, P., editors). Allied Publishers Ltd, Kolkata.Google Scholar
Komadel, P. & Madejova, J. (2006) Acid activation of clay minerals. Pp. 263287 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 146 in: Layer charge characteristics of 2:1 silicate clay minerals (Mermut, A.R., editor). The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Lowell, S., Shields, J.E., Thomas, M.A. & Thommes, M. (2006) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer Verlag, Berlin, 347 pp.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.CrossRefGoogle Scholar
Miiller-Vonmoos, M. & Kahr, G. (1983) Mineralogische Untersuchungen von Wyoming Bentonit MX-80 und Montigel. NAGRA TB 83-12, Wettingen.Google Scholar
Ralla, K., Sohling, U., Ruf, F., Riechers, D., Kasper, C. & Scheper, T. (2008) Adsorption of proteins by smectitic clay minerals. Bioperspectives 2008, Hannover.Google Scholar
Rosier, H.J. (1979) Lehrbuch der Mineralogie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.Google Scholar
Ruehlicke, G. & Kohler, E.E. (1981) A simplified procedure for determining layer charge by the n-alkylammonium method. Clay Minerals, 16, 305307.CrossRefGoogle Scholar
Sabah, E. (2007) Decolorization of vegetable oils: chlorophyll-a adsorption by acid-activated sepiolite. Journal of Colloid and Interface Science, 310, 17.CrossRefGoogle ScholarPubMed
Sabah, E. & Celik, M.S. (2005) Sepiolite: an effective bleaching adsorbent for the physical refining of degummed rapeseed oil. Journal of the American Oil Chemists Society, 82, 911916.CrossRefGoogle Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603619.Google Scholar
Sohling, U., Ruf, F., Schurz, K., Emmerich, K., Steudel, A., Schuhmann, R., Weidler, P.G., Ralla, K., Riechers, D., Kasper, C. & Scheper, T. (2009) Natural mixture of silica and smectite as a new clayey material in industrial application. Clay Minerals, 44, 525537.Google Scholar
Steudel, A., Batenburg, L., Fischer, H., Weidler, P.G. & Emmerich, K. (2009a) Alteration of non-swellable clays by acid treatment. Applied Clay Science, 44, 95104.Google Scholar
Steudel, A., Batenburg, L., Fischer, H., Weidler, P.G. & Emmerich, K. (2009b) Alteration of swellable clays by acid treatment. Applied Clay Science, 44, 105115.Google Scholar
Steudel, A., Weidler, P.G., Schuhmann, R. & Emmerich, K. (2009c) Cation exchange reactions of vermiculite with Cu-Triethylenetetramine as affected by mechanical and chemical pretreatment. Clays and Clay Minerals, 57, 486493.Google Scholar
Stevens, R.E. (1945) A system for calculating analyses of micas and related minerals to end members. Contributions to Geochemistry, Geological Survey Bulletin, 950, 101119.Google Scholar
Siid-Chemie, A.G. (2008) Surface-rich clays used for the production of bleaching earth, and method for the activation of said clays. Patent WO 2006131136; International Filing date 08/06/2005, Schurz, KGoogle Scholar
Tributh, H. & Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen Teil I: Aufbereitung der Proben im Labor. GIT Fachzeitschrift für das Laboratorium, 30, 524529.Google Scholar
Vincente Rodriquez, M.A., Lopez Gonzalez, J. de D. & Bañares Muñoz, M.A. (1995) Influence of the free silica generated during acid activation of a sepiolite on the adsorbent and textural properties of the resulting solids. Journal of Materials Chemistry, 5, 127132.Google Scholar
Wolters, F., Lagaly, G., Kahr, G., Nüesch, R. & Emmerich, K. (2009) A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57, 115133.Google Scholar
Zschau, W. (1985) Was ist Bleicherde. Fette, Seifen, Anstrichmittel, 87, 506508.CrossRefGoogle Scholar