Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T00:44:31.522Z Has data issue: false hasContentIssue false

Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry

Published online by Cambridge University Press:  27 February 2018

M. El Ouahabi*
Affiliation:
UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie B.18, Sart-Tilman, Université de Liège, Liège, B-4000, Belgium
L. Daoudi
Affiliation:
Département de Géologie, Faculté des Sciences et Techniques, BP 549, Marrakech, Morocco
N. Fagel
Affiliation:
UR Argile, Géochimie et Environnement sédimentaires (AGEs), Département de Géologie B.18, Sart-Tilman, Université de Liège, Liège, B-4000, Belgium
*

Abstract

This study focuses on the mineralogical and geotechnical characterization of northern Moroccan clays from the Tangier and Tetouan areas and compares them with the main clay deposits used in the Moroccan ceramic industry (from Meknes, Fes, Salé and Safi regions). Sampled clays were analysed by X-ray diffraction on bulk and clay (<2 μm) fractions to identify the mineralogical assemblages of the clay outcrops. Further analyses were conducted to determine the particle size distribution (laser diffraction particle analyser), the total organic matter content (Loss- On-Ignition measurements) and the Atterberg limits of the raw clays. The study aims at investigating the spatial variability of the clay samples and at evaluating their potential application as raw materials in the ceramic industry.

Tetouan and Tangier clays are characterized by diversified mineralogical assemblages (in particular a variable proportion of clay, quartz and calcite) compared with the Meknes, Fes, Salé and Safi clays (high clay content, quartz and calcite). The clay fraction of the Tetouan and Tangier samples is dominated by illite and kaolinite with variable amounts of chlorite, smectite and/or vermiculite. Illite is the dominant phase in the Meknes, Fes, Safi and Salé clays, but is associated with kaolinite. No direct relationship between the mineral assemblage composition and the lithology of the series was found.

The clays materials studied consist generally of fine particles with medium to high plasticity and low organic matter content. Due to their mineralogy, grain-size distribution and plasticity the clays appear to be suitable as raw material for the growing Morocco ceramic industry.

Type
The 14th George Brown Lecture
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abajo, M. (2000) Manual sobre Fabricación de Baldosas, Tejas y Ladrillos (S.A. Beralmar, editor), Barcelona, 125 pp.Google Scholar
Andrade, F.A., Al-Qureshi, H.A. & Hotza, D. (2011) Measuring the plasticity of clays: a review. Applied Clay Science, 51, 17.CrossRefGoogle Scholar
Andrieux, J. (1971) La structure du Rif central. Notes et Mémoires du Sérvice Géologique du Maroc, 235, 155.Google Scholar
Azdimousa, A., Poupeau, G., Rezqi, H., Asebriy, L., Bourgois, J. & Ait Brahim, L. (2006) Géodynamique des bordures méridionales de la mer d’Alboran; application de la stratigraphie séquentielle dans le bassin néoge`ne de Boudinar (Rif oriental, Maroc). Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 28, 918.Google Scholar
Bain, J.A. (1971) A plasticity chart as an aid to the identification and assessment of industrial clays. Clay Minerals, 9, 117.CrossRefGoogle Scholar
Ben Bouziane, A. (1995) Evolutions sédimentologique et diagenétique des carbonates du Dévonien des régions Oulad Abbou, Mechra Ben Abbou et Doukkala (Meseta marocaine occidentale). The`se Sciences, Université. Hassan II. Casablanca.Google Scholar
Berrada, H. (2001) La poterie feminine au Maroc. Publiday Multidia Eds, Maroc, 240 pp.Google Scholar
Bertrand, S., Charlet, F., Chapron, E., Fagel, N. & De Batist, M. (2008) Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39oS. Pal ae o g e ogr a p h y , Pa l a e o c l i m a t o l o g y , Palaeoecology, 259, 301322.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America, Bulletin, 803832.Google Scholar
Brownell, W.E. (1977) Structural clay products. Applied Mineralogy, 9, Springer Berlin.Google Scholar
Casagrande, A. (1947) Classification and identification of soils. American Society of Engineers, 73, 783811. Chamley, H. (1989) Clay Sedimentology. Springer- Verlag, Berlin, 623 pp.Google Scholar
Chilingarian, G.V. (1995) Interrelationship among permeability, porosity, specific surface area and irreducible fluid saturation. Scientia Iranica, 1, 914.Google Scholar
Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory. Pp. 999-1007 in: Initial Report. DSDP (D.E. Hayes, L.A. Frakes et al., editors), 28. Washington (U.S. Govt. Printing Office).Google Scholar
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O. & De La Torre, M.J. (2001) Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621634.CrossRefGoogle Scholar
Daniel, D.E. (1991) Seminar publication: Design and construction of RCRA/CERCLA final covers. Environmental Protection Agency, USA.Google Scholar
De Oliveira Modesto, C. & Bernardin, A.M. (2008) Determination of clay plasticity: indentation method versus Pfefferkorn method. Applied Clay Science, 40, 1519.CrossRefGoogle Scholar
Dondi, M., Marsigli, M. & Venturi, I. (1998) Technological requirements of raw materials for heavy clay products. Pp. 204-207 in: Proceedings of the 2nd Mediterranean Clay Meeting, Aveiro, Portugal, 2.Google Scholar
Durand Delga, M., Hottinger, L., Marca’is, J., Mattauer, M., Lilliard, Y. & Suter, G. (1960_1962) Livre a` la mémoire du Professeur Paul Fallot consacré a` l’évolution paléogéographique et structurale des domaines méditerranéens et alpins d’Europe, pp. 399-422. Société géologique de France.Google Scholar
El Yakoubi, N. (2006) Potentialités d’utilisation des argiles marocaines dans l’industrie céramique: cas des gisements de Jbel Kharrou et de Benhmed (Meseta marocaine occidentale). The`se Doc, Université Agdal, Maroc.Google Scholar
Fabbri, B. & Dondi, M. (1995) La produzione del laterizio in Italia. Faenza Editrice, 160pp.Google Scholar
Fagel, N. & Boe‥s, X. (2003) Clay-mineral record in Lake Baikal sediments: the Holocene and Late Glacial transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 230243.CrossRefGoogle Scholar
Fagel, N., Boski, T., Likhoshway, L. & Oberhaensli, H. (2003) Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Pal ae o g e ogr a p h y , Pa l a e o c l i m a t o l o g y , Palaeoecology, 193, 159179.Google Scholar
Ferrari, S. & Gualtieri, A. F. (2006) The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 7381.CrossRefGoogle Scholar
Grim, R. E. (1968) Clay Mineralogy. McGraw-Hill, New York, 595 pp.Google Scholar
Gübeli, A., Hochuli, P.A. & Wildi, W. (1984) Lower Cretaceous turbiditic sediment from the Rif chain (northern Morocco); palynology, stratigraphy setting. Geologisches Rundschau, 73, 10811114.CrossRefGoogle Scholar
Hart, J., Zhu, Y. & Pirard, E. (2011) Particle size and shape characterisation _ current technology and practice. Pp. 77-127 in: Advances in the Characterization of Industrial Minerals (G.E. Christidis, editor). EMU Notes in Mineralogy, 9, European Mineralogical Union, Mineralogical Society of Great Britain and Ireland.Google Scholar
Heiri, O., Lotter, A.F. & Lemcke, G. (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101110.CrossRefGoogle Scholar
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering. Prentice-Hall, Inc., New Jersey.Google Scholar
Lamarti Sefian, N., André, J.-P., El Hajjaji, K., Pouyet, S. & Ben Moussa A, (1998) Une plate-forme ouverte a` facie`s bryomol: Le bassin Mioce`ne supérieur de Charf El Akab (Maroc atlantique). Comptes Rendus de l’Académie des Sciences - Series IIA - Earth and Planetary Science, 327, 377383.Google Scholar
Lee, G. & Yeh, T.H. (2008) Sintering effects on the development of mechanical properties of fired clay ceramics. Materials Science and Engineering, 485, 513.CrossRefGoogle Scholar
McManus, J. (1988) Grain size distribution and interpretation. Pp. 63-85 in: Techniques in Sedimentology (M.E. Tucker, editor). Blackwell Scientific Publications, Oxford.Google Scholar
Mahmoudi, S., Srasra, E. & Zargouni, F. (2008) The use of Tunisian Barremian clay in the traditional ceramic industry: Optimization of ceramic properties. Applied Clay Science, 42, 125129.CrossRefGoogle Scholar
Marsigli, M. & Dondi, M. (1997) Plasticita` delle argille italiane per laterizi e previsione del loro comportamento in foggiatura. L’industria dei Laterizi, 46, 214222.Google Scholar
Mitchell, J.K. (1993) Fundamentals of Soil Behavior. 2nd edition, 437 pp. John Wiley & Sons, New York. Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332 pp.Google Scholar
Moore, F. (1963) Two instruments for studying the plasticity of clays. Journal of Scientific Instruments, 40, 228231.CrossRefGoogle Scholar
Murray, H.H. (2007) Applied Clay Mineralogy. Developments in Clay Science, 2, Elsevier.Google Scholar
Onoda, G.Y. (1996) Mechanism of plasticity in clay_- water systems. Pp. 79-87 in: Science of Whitewares (V.E. Henkes G.Y. Onoda & W.M. Carty, editors). The American Ceramic Society, Columbus, Ohio, USA.Google Scholar
Peters, J.F. (1991) Determination of undrained shear strength of low plasticity clays. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 28, A13.Google Scholar
Punmia, B.C., Jain, A.K. & Jain, A.K. (2003) Basic Civil Engineering. 1st edition, 446pp.Google Scholar
Reed, J. S. (1995) Principles of Ceramics Processing: 2nd edition, John Wiley & Sons Inc.Google Scholar
Reeves, G. M., Sims, I. & Cripps, J. C. (2006) Clay Materials Used in Construction. Geological Society, Special Publication, London, 525 pp.Google Scholar
Riccardi, M.P., Messiga, B. & Duminuco, P. (1999) An approach to the dynamics of clay firing. Applied Clay Science, 15, 393409.CrossRefGoogle Scholar
Righi, R. & Meunier, A. (1995) Origin of clays by rock weathering and soil formation. Pp. 43-161 in: Origin and Mineralogy of Clays (B. Velde, editor), Clays and the Environment, Springer.Google Scholar
Ross, G. J. & Kodama, H. (1976) Experimental alteration of a chlorite into a regularly interstratified chloritevermiculite by chemical oxidation, Clays and Clay Minerals, 24, 183190.CrossRefGoogle Scholar
Singer, F. & Singer, S.S. (1979) Industrial Ceramics, 299302. Chapman and Hall Ltd, New Fetter Lane, London.Google Scholar
Strazzera, B., Dondi, M. & Marsigli, M. (1997) Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247266.CrossRefGoogle Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals, (G. Lelotte, editor), 90. Lie`ge.Google Scholar
Thorez, J. (1998) Différenciation minéralogique et génétique, par DRX, des smectites post-saturées au Li et K. Applications en sédimentologie, paléopédologie, paléogéographie, paléoclimatologie , stratigraphie et en argilostratigraphie séquentielle: Réunion Spécialisée ASF-SGF, Paris, 30, 106107.Google Scholar
Vandiver, P.B., Soffer, O., Klima, B. & Svoboda, J. (1989) The origins of ceramic technology at Dolni Věstonice, Czechoslovakia. Science, 246, 10021008. Velde, B. & Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. Heidelberg, 406 pp.CrossRefGoogle ScholarPubMed
Vieira, C.M.F., Sa’nchez, R. & Monteiro, S.N. (2008) Characteristics of clays and properties of building ceramics in the state of Rio de Janeiro, Brazil. Construction and Building Materials, 22, 781787.CrossRefGoogle Scholar
Wernli, R. (1988) Micropaléontologie du Néoge`ne postnappes du Maroc septentrional et description syste ’matique des foraminife`res planctoniques. Notes Mémoires Service Géologique Maroc, 331, 1270.Google Scholar
Wildi, W. (1983) La chaıˆne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et évolution du Trias au Mioce`ne. Revue de Géologie Dynamique et de Géographie Physique, 24/3, 201297.Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: Past, present and future perspectives. Clay Minerals, 34, 725.CrossRefGoogle Scholar
Winkler, H.G.F. (1954) Bedeutung der korngr6ssenverteilung und des mineral-bestandes von tonen fiir die herstellung grobkerarnischer erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 337343.Google Scholar