Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T15:56:23.024Z Has data issue: false hasContentIssue false

Maghemite in soils and its origin

II. Maghemite syntheses at ambient temperature and pH 7

Published online by Cambridge University Press:  09 July 2018

R. M. Taylor
Affiliation:
Institut für Bodenkunde, Technische Universität München, Freising-Weihenstephan, West Germany
U. Schwertmann
Affiliation:
Institut für Bodenkunde, Technische Universität München, Freising-Weihenstephan, West Germany

Abstract

The products of air oxidation of mixed Fe(II)-Fe(III) chloride solutions at pH 6 and 7, at 20 and 60°C and at normal pressure contain green rust, maghemite, lepidocrocite, goethite and a paracrystalline ferric hydroxide (ferrihydrite). Among these maghemite, a cubic ferromagnetic iron oxide (Fe2O3) found in many soils, is favoured by slow oxidation rate, high total Fe concentration, the presence of small amounts of Fe(III) in the original predominantly Fe(II) solution, higher temperature and at pH 7 rather than pH 6. The green rust is believed to be an essential precursor of maghemite. On slow oxidation it will form maghemite probably via magnetite. Fast oxidation prevents the cubic phase from being formed and lepidocrocite is the end product. At higher Fe(III) proportions ferrihydrite can be formed which under certain influences converts to goethite and/or hematite. The common iron oxides are seen to form from the same system from small variations in environment which is to be expected from their common associations in soils

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afremow, & Vandeberg, (1966) J. Paint Techn. 38, 169.Google Scholar
Basta, E.Z. (1959) Econ. Geol. 54, 698.CrossRefGoogle Scholar
Bernal, J.D., Dasgupta, D.R. & Mackay, A.L. (1959) Clay Min. Bull. 4, 15.CrossRefGoogle Scholar
Chukhrov, F.V., Zvyagin, B.B., Ermilova, L.P. & Gorshkov, A.I. (1972) Proc. Int. Clay Conf. Madrid, 333.Google Scholar
Farreix, D.M. (1972) Mines Branch Invest. Rep. IR 72-18, Dep. of Energy, Mines and Resources, Canada.Google Scholar
Fasiska, E.J. (1967) Corros. Sci. 7, 833.Google Scholar
Feitknecht, W. (1959) Z. Electrochem. 63, 34.Google Scholar
Feitknecht, W. (1965) Collogues, int. Cent. natn. Rech. scient. 122.Google Scholar
Hagg, G. (1935) Z. Physikal. Chem. 29, 95.Google Scholar
Keller, G. (1948) Ph.D. Thesis, Universitat Bern.Google Scholar
Liese, H.C. (1967) Am. Miner. 52, 1198.Google Scholar
Mackay, A.L. (1960) Reactivity of Solids. Proc. 4th Int. Sym. Amsterdam, 571.Google Scholar
Michel, A. (1949) Bull. Soc. Chem. France, D. 128.Google Scholar
Schwertmann, U. & Heinemann, B. (1959) Neues Jb. Miner. 3, 174.Google Scholar
Schwertmann, U. (1959) Z. anorg. allg. Chem. 298, 337.Google Scholar
Schwertmann, U. (1966) Proc. Int. Clay Conf. Jerusalem, 1, 159.Google Scholar
Van Der Marel, H.W. (1951) J. sedim. Petrol. 21, 12.Google Scholar