Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T01:17:53.081Z Has data issue: false hasContentIssue false

Low-pH cement mortar-bentonite perturbations in a small-scale pilot laboratory experiment

Published online by Cambridge University Press:  02 July 2018

D.E. González-Santamaría
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
M. Angulo
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
A.I. Ruiz
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
R. Fernández
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
A. Ortega
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
J. Cuevas*
Affiliation:
Departamento de Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco s/n, 28049 Madrid, Spain
*

Abstract

A novel method to perform small-scale laboratory experiments that reproduce concrete–bentonite and concrete–groundwater interactions has been developed. Such interfaces will prevail in engineered barrier systems used for isolation of nuclear waste. With the goal of optimizing the experimental method, this work has analysed the geochemical interaction of distilled water, low-pH cement mortar and FEBEX-bentonite for 75 days. Limited but evident reactivity between the materials was observed, mainly decalcification in cement mortar, carbonation at the interface with bentonite and Mg enrichment in bentonite. These results are consistent with the state-of-the-art literature and were used to validate this small-scale pilot laboratory experiment to establish the basis for further studies comparing the behaviour of different buffer and cement materials.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the session: ‘ES-04 Clay barriers performance in the long-term isolation of waste’ of the International Clay Conference 2017.

Guest Associate Editor: M.V. Villar

References

REFERENCES

Bäckblom, G. (2005) R&D on low-pH cement for a geological repository in: SKB and the ESDRED project: 2nd low-pH workshop proceedings. ENRESA, Madrid, Spain.Google Scholar
Bartier, D., Techer, I., Dauzères, A., Boulvais, P., Blanc-Valleron, M-M. & Cabrera, J. (2013) In situ investigations and reactive transport modelling of cement paste/argillite interactions in a saturated context and outside an excavated disturbed zone. Applied Geochemistry, 31, 94108.Google Scholar
Baston, G.M.N., Clacher, A.P., Heath, T.G., Hunter, F.M.I., Smith, V. & Swanton, S.W. (2012) Calcium silicate hydrate (C-S-H) gel dissolution and pH buffering in a cementitious near field. Mineralogical Magazine, 76, 30453053.Google Scholar
Berner, U., Kulik, D. & Kosakowski, G. (2013) Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste. Physics and Chemistry of the Earth, 64, 4656.Google Scholar
Bildstein, O. & Claret, F. (2015) Stability of barriers under chemical perturbations. Pp. 155188 in: Natural and Engineered Clay Barriers (Tournassat, C., Steefel, C.I., Bourg, I.C. & Bergaya, F., editors). Elsevier Ltd, Amsterdam.Google Scholar
Bourg, I.C. & Tournassat, C. (2015) Self-diffusion of water and ions in clay barriers. Pp. 189226 in: Natural and Engineered Clay Barriers (Tournassat, C., Steefel, C.I., Bourg, I.C. & Bergaya, F., editors). Elsevier Ltd, Amsterdam.Google Scholar
Caballero, E., de Cisneros, C., Huertas, F., Huertas, F., Pozzuoli, A. & Linares, J. (2005) Bentonites from Cabo de Gata, Almería, Spain: a mineralogical and geochemical overview. Clay Minerals, 40, 463480.Google Scholar
Cuevas, J., Samper, J., Turrero, M.J. & Wieczorek, K. (2014) Impact of the geochemical evolution of bentonite barriers on repository safety functions. Pp. 3542 in: PEBS Case 4. Proceedings International Conference on the Performance of Engineered Barrier: Physical and Chemical Properties, Behavior and Evolution (BGR. Schäfers, A. & Fahland, S., editors). Hannover, Germany.Google Scholar
Cuevas, J., Ruiz, A.I., Fernández, R., Torres, E., Escribano, A., Regadío, M. & Turrero, M.J. (2016) Lime mortar-compacted bentonite–magnetite interfaces: An experimental study focused on the understanding of the EBS long-term performance for high-level nuclear waste isolation DGR concept. Applied Clay Science, 124–125, 7993.Google Scholar
Dauzères, A., Le Bescop, P., Sardini, P. & Cau Dit Coumes, C. (2010) Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results. Cement and Concrete Research, 40, 13271340.Google Scholar
Dauzères, A., Le Bescop, P., Cau-Dit-Coumes, C., Brunet, F., Bourbon, X., Timonen, J., Voutilainen, M., Chomat, L. & Sardini, P. (2014) On the physico-chemical evolution of low-pH and CEM I cement pastes interacting with Callovo-Oxfordian pore water under its in situ CO2 partial pressure. Cement and Concrete Research, 58, 7688.Google Scholar
Dauzères, A., Achiedo, G., Nied, D., Bernard, E., Alahrache, S. & Lothenbach, B. (2016) Magnesium perturbation in low-pH concretes placed in clayey environment – solid characterizations and modeling. Cement and Concrete Research, 79, 137150.Google Scholar
ENRESA (2006) Post-mortem bentonite analysis. Pp. 183 in: FEBEX Project Final Report (Villar, M.V., editor). Publicación técnica 1-5/2006, Madrid, Spain.Google Scholar
Ewing, R., Whittleston, R. & Yardley, B. (2016) Geological disposal of nuclear waste: a primer. Elements, 12, 233237.Google Scholar
Fernández, A.M., Baeyens, B., Bradbury, M. & Rivas, P. (2004) Analysis of the porewater chemical composition of a Spanish compacted bentonite used in an engineered barrier. Physics and Chemistry of the Earth, 29, 105118.Google Scholar
Fernández, R., Mäder, U., Rastrero, M., Vigil de la Villa Mencía, R. & Cuevas, J. (2009) Alteration of compacted bentonite by diffusion of highly alkaline solutions. European Journal of Mineralogy, 21, 725735.Google Scholar
Fernández, R., Mäder, U. & Cuevas, J. (2010) Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier. Cement and Concrete Research, 40, 12551264.Google Scholar
Fernández, R., Vigil de la Villa, R., Ruiz, A.I., García, R. & Cuevas, J. (2013) Precipitation of chlorite-like structures during OPC porewater diffusion through compacted bentonite at 90°C. Applied Clay Science, 83–84, 357367.Google Scholar
Fernández, R., Torres, E., Ruiz, A.I., Cuevas, J., Alonso, M.C., García Calvo, J.L., Rodríguez, E. & Turrero, M.J. (2017) Interaction processes at the concrete-bentonite interface after 13 years of FEBEX-Plug operation. Part II: Bentonite contact. Physics and Chemistry of the Earth, Parts A/B/C, 99, 4963.Google Scholar
Gaboreau, S., Prêt, D., Tinseau, E., Claret, F., Pellegrini, D & Stammose, D. (2011) 15 years of in situ cement–argillite interaction from Tournemire Characterisation of the multi-scale spatial heterogeneities of pore space evolution. Applied Geochemistry, 26, 21592171.Google Scholar
Gaboreau, S., Lerouge, C., Dewonck, S., Linard, Y., Bourbon, X., Fialips, C.I., Mazurier, A., Prêt, d., Borschneck, D., Montouillout, V., Gaucher, E. C. & Claret, F. (2012) In-situ interaction of cement paste and shotcrete with claystones in a deep disposal context. American Journal of Science, 312, 314356.Google Scholar
García Calvo, J.L., Hidalgo, A., Alonso, C. & Fernández, L. (2010) Development of low-PH cementitious materials for HLRW repositories. Cement and Concrete Research, 40, 12901297.Google Scholar
García Calvo, J.L. (2012) Desarrollo De Materiales de Construcción con Cemento de Bajo pH, compatibles con la Barrera de Ingeniería de un Almacenamiento Geológico Profundo de Residuos Radiactivos de Alta Actividad. PhD thesis, Instituto Eduardo Torroja de Ciencias de la Construcción, Spain.Google Scholar
Gaucher, E. & Blanc, P. (2006) Cement/clay interactions – A review: Experiments, natural analogues, and modelling. Waste Management, 26, 776788.Google Scholar
Gibney, E. (2015) Why Finland now leads the world in nuclear waste storage. Nature. doi.org/10.1038/nature.2015.18903.Google Scholar
Gómez-Espina, R. & Villar, M.V. (2016) Time evolution of MX-80 bentonite geochemistry under thermo-hydraulic gradients. Clay Minerals, 51, 145160.Google Scholar
IAEA-TECDOC-1718 (2013) Characterization of swelling clays as components of the engineered barrier system for geological repositories. Results of an IAEA Coordinated Research Project, 2002–2007.Google Scholar
Jenni, A., Mäder, U., Lerouge, C., Gaboreau, S. & Schwyn, B. (2014) In situ interaction between different concretes and Opalinus Clay. Physics and Chemistry of the Earth, 70–71, 7183.Google Scholar
Kaufhold, S., Dohrmann, R., Sandén, T., Sellin, P. & Svensson, D. (2013) Mineralogical investigations of the first package of the alternative buffer material test – I. Alteration of bentonites. Clay Minerals, 48, 199213.Google Scholar
Kaufhold, S. & Dohrmann, R. (2016) Distinguishing between more and less suitable bentonites for storage of high-level radioactive waste. Clay Minerals, 51, 289302.Google Scholar
Lerouge, C., Gaboreau, S., Grangeon, S., Claret, F., Warmont, F., Jenni, A., Cloet, V. & Mäder, U. (2017) In situ interactions between Opalinus Clay and Low Alkali Concrete. Physics and Chemistry of the Earth, 99, 321.Google Scholar
Liu, S., Jacques, D., Govaerts, J. & Wang, L. (2014) Conceptual model analysis of interaction at a concrete-Boom Clay interface. Physics and Chemistry of the Earth, 70–71, 150159.Google Scholar
Lothenbach, B., Nied, D., L'Hôpital, E., Achiedo, G. & Dauzères, A. (2015) Magnesium and calcium silicate hydrates. Cement and Concrete Research, 77, 6068.Google Scholar
Mäder, U., Jenni, A., Lerouge, C., Gaboreau, S., Miyoshi, S., Kimura, Y., Cloet, V., Fukaya, M., Claret, F., Otake, T., Shibata, M. & Lothenbach, B. (2017) 5-year chemico-physical evolution of concrete–claystone interfaces, Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110, 307327.Google Scholar
McCarthy, G., Hassett, D. & Bender, J. (1991) Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization. MRS Proceedings, 245, 129. doi:10.1557/PROC-245-129.Google Scholar
Meunier, A., Velde, B. & Griffault, L. (1998) The reactivity of bentonites: A review. An application to clay barrier stability for nuclear waste storage. Clay Minerals, 33, 187193Google Scholar
Muhammad, N. (2004) Hydraulic, Diffusion, and Retention Characteristics of Inorganic Chemicals in Bentonite. PhD thesis, University of South Florida, EEUU, USA.Google Scholar
NEA-OECD (2003) Engineered Barrier Systems and the Safety of Deep Geological Repositories. State-of-the art Report. OECD Publications, Paris, 70 pp.Google Scholar
Nied, D., Enemark-Rasmussen, K., L'Hopital, E., Skibsted, J. & Lothenbach, B. (2016) Properties of magnesium silicate hydrates (M-S-H). Cement and Concrete Research, 79, 323332.Google Scholar
Pegado, L., Labbez, C. & Churakov, S. V. (2014) Supporting Information for: Mechanism of aluminium incorporation into C–S–H from ab initio calculations. Journal of Materials Chemistry A, 2, 3477.Google Scholar
Roosz, C., Grangeon, S., Blanc, P., Montouillout, V., Lothenbach, B., Henocq, P., Giffaut, E., Vieillard, P. & Gaboreau, S. (2015) Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg–Si phyllosilicates. Cement and Concrete Research, 73, 228237.Google Scholar
Savage, D. (2014) An assessment of the impact of the long-term evolution of engineered structures on the safety-relevant functions of the bentonite buffer in a HLW repository. Pp. 88 in: National Cooperative for the Disposal of Radioactive Waste. Technical Report 13-02 (Nagra Editor). Wettingen, Switzerland.Google Scholar
Savage, D., Walker, C., Arthur, R., Rochelle, C., Oda, C. & Takase, H. (2007) Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Physics and Chemistry of the Earth, 32, 287297.Google Scholar
Stronach, S.A. & Glasser, F.P. (1997) Modelling the impact of abundant geochemical components on phase stability and solubility of the CaO-SiO2-H2O system at 25 °C: Na+, K+, SO32–, CT and CO23–. Advances in Cement Resesarch, 9, 167S181S.Google Scholar
Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, H. & Bourbon, X. (2007) Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Physics and Chemistry of the Earth, Parts A/B/C 32 (1–7): 259274.Google Scholar
U.S. DOE (Department of Energy) (2014) Evaluation of options for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste, Volume I. Used Fuel Disposition Campaign. Sandia National Laboratory, New Mexico, USA.Google Scholar
Van Damme, H. & Pellenq, R.J.M. (2013) Chapter 14.3–cement hydrates. Pp. 801817 in: Handbook of Clay Science (Bergaya, F. and Lagaly, G., editors). Developments in Clay Science, Elsevier Ltd, Amsterdam.Google Scholar
Villar, M.V. (2000) Caracterización termohidro-mecánica de una bentonita de Cabo de Gata. PhD thesis, Universidad Complutense de Madrid, Spain.Google Scholar
Villar, M.V. (2002) Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. Pp 285 in: A Study Applied to the use of Bentonite as Sealing Material in high level Radioactive Waste Repositories. Technical publication. ENRESA 01/2002, Madrid, Spain.Google Scholar
Villar, M.V. & Lloret, A. (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Applied Clay Science, 26, 337350.Google Scholar
Villar, M.V., Martín, P.L., Bárcena, I., García-Siñeriz, J.L., Gómez-Espina, R. & Lloret, A. (2012) Long-term experimental evidence of saturation of compacted bentonite under repository conditions. Engineering Geology, 149–150, 5769.Google Scholar
Villar, M.V., Fernández, A.M., Romero, E., Dueck, A., Cuevas, J., Plötze, M., Kaufhold, S., Dohrman, R., Iglesias, R.J., Sakaki, T., Zheng, L., Kawamoto, K. & Kober, F. (2018) FEBEX-DP Postmortem Analysis Report. Nagra Report NAB 16–017. 147 pp.Google Scholar
Williams, L.A., Parks, G.A. & Crerar, D.A. (1985) Silica Diagenesis, I. Solubility Controls. SEPM Journal of Sedimentary Research, 55, 03010311.Google Scholar
Supplementary material: File

González-Santamaría et al. supplementary material

Table S1

Download González-Santamaría et al. supplementary material(File)
File 20.1 KB