Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:13:04.187Z Has data issue: false hasContentIssue false

Layer-charge evaluation of expandable clays from a chronosequence of podzols in Finland using an alkylammonium method

Published online by Cambridge University Press:  09 July 2018

F. Gillot
Affiliation:
UMR-CNRS 6532, HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
D. Righi*
Affiliation:
UMR-CNRS 6532, HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
M. L. Räisänen
Affiliation:
Geological Survey of Finland, Regional Office, PO Box 1237, 70211 Kuopio, Finland
*

Abstract

Smectites from the E horizon of podzols dated at 1200–10,000 y in central and northern Finland were studied. Clay minerals in the fine (<0.1 μm) and coarse (0.1–2 μm) fractions were examined by X-ray diffraction. The distribution (octahedral or tetrahedral) and magnitude of the layer charge of expandable minerals were estimated using intercalation of alkylammonium ions (nC = 12) associated with the Hofmann & Klemen effect. In addition, charge alteration following desaturation (H+ exchange) and autotransformation was investigated. Smectites from the E horizons of podzols are not homogeneous but constitute a mixture of several populations with various layer charges. Smectites with lower layer charge are present in podzols having a longer effective time of pedogenesis, suggesting alteration of the high-charge smectites with time. Experimental alteration of the smectites by autotransformation shows that a decrease of the layer charge is easily produced by desaturation of the smectite clays.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, D.C. & Duthie, D.M.L. (1984) The effect of weathering in the silt fractions on the apparent stability of chlorite in Scottish soil clays. Geoderma, 34, 221227.CrossRefGoogle Scholar
Barshad, I. (1969) Preparation of H saturated montmorillonites. Soil Sci. 108, 3842.CrossRefGoogle Scholar
Churchman, G.J. (1980) Clay minerals formed from micas and chlorite in some New Zealand soils. Clay Miner. 15, 5976.CrossRefGoogle Scholar
Gillot, F. (1999) Géne‘se et évolution des smectites de transformation de trois chronoséquences (300- 10,000 ans) de podzols de Finlande. Thesis, Univ. Poitiers, France.Google Scholar
Gillot, F., Righi, D. & Räisänen, M.L. (1999) Formation of smectites and their alteration in two chronosequences of podzols in Finland. Pp. 725731 in: Clays for our future, Proc. 11th Int. Clay Conf. Ottawa Canada 1997 (Kodama, H., Mermut, A. R. & Torrance, J. K., editors). ICC97 organizing committee, Ottawa, Ontario, Canada.Google Scholar
Gillot, F., Righi, D. & Elsass, F. (2000) Pedogenic smectites in podzols from central Finland: an analytical electron microscopy study. Clays Clay Miner. 48, 665–664.CrossRefGoogle Scholar
Gjems, O. (1967) Studies on clay minerals and clay mineral formation in soil profiles in Scandinavia. Med. Nor. Skogforsoksvesen, 21, 303345.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clays. J. Soil Sci. 4, 233237.CrossRefGoogle Scholar
Hofmann, V.U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithium-ionen an Bentonit durch erhitzung. Zeitung für Anorganische Chemie, 262, 9599.CrossRefGoogle Scholar
INRA (1995) Référentiel Pédologique. INRA éditions, Paris.Google Scholar
Janek, M., Komadel, P. & Lagaly, G. (1997) Effect of autotransformation on the layer charge of smectites determined by the alkylammonium method. Clay Miner. 32, 623632.CrossRefGoogle Scholar
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner. 35, 440448.CrossRefGoogle Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 146 in. Layer Charge Characteristics of 2:1 Silicate Clay Minerals (Mermut, A.R., editor). CMS Workshop Lectures, vol. 6. The Clay Minerals Society, Boulder, CO, USA.Google Scholar
Laird, D.A., Barriuso, E., Dowdy, R.H. & Koskinen, W.C. (1992) Adsorption of atrazine on smectites. Soil Sci. Soc. Am. J. 56, 6267.CrossRefGoogle Scholar
Lanson, B. (1993) DECOMPXR, X-ray Decomposition Program. ERM (Sarl) Poitiers, France.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays Clay Miner. 45, 132146.CrossRefGoogle Scholar
Lim, C.H. & Jackson, M.L. (1986) Expandable phyllosilicate reactions with lithium on heating. Clays Clay Miner. 34, 346–342.CrossRefGoogle Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalat ion complexe s of clay minerals. Pp. 197248 in: Crystal Structu res of Clay Minerals and their X-ray Identification (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.CrossRefGoogle Scholar
Madejová, J., Bujdak, J., Gate, W.P. & Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonites with various Li contents. Clay Miner. 31, 233241.CrossRefGoogle Scholar
Maes, A., Verheyden, D. & Cremers, A. (1985) Formation of highly selective cesium-exchange sites in montmorillonites. Clays Clay Miner. 33, 251257.CrossRefGoogle Scholar
Malla, P.B. & Douglas, L.A. (1987a) Identification of expanding layer silicates: layer charge vs. expansion properties. Pp. 227283 in: Proc. Int. Clay Conf. Denver, 1985 (Schultz, L.G., van Olphen, H. & Mumpton, F.A., editors). The Clay Minerals Society, Bloomington, IN, USA.Google Scholar
Malla, P.B. & Douglas, L.A. (1987b) Layer charge properties of smectites and vermiculites: tetrahedral vs octahedral. Soil Sci. Soc. Am. J. 51, 13621366.CrossRefGoogle Scholar
McDaniel, P.A., Falen, A.L., Tice, K.R., Graham, R.C. & Fendorf, S.E. (1995) Beidellite in E horizons of northern Idaho Spodosols formed in volcanic ash. Clays Clay Miner. 43, 525532.CrossRefGoogle Scholar
Mehra, O. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Novak, I. & Čičel, B. (1978) Dissolution of smectites in hydrochloric acid, II. Dissolution rate as a function of crystallochemical composition. Clays Clay Miner. 26, 341344.CrossRefGoogle Scholar
Olis, A.C., Malla, P.B. & Douglas, L.A. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Miner. 25, 3950.CrossRefGoogle Scholar
Petäjä-Ronkainen, A., Peuraniemi, V. & Aario, R. (1992) On podzolization in glaciofluvial material in northern Finland. Ann. Acad. Sci. Fennicae, series A, 156, 519.Google Scholar
Protz, R., Ross, G.J. & Shipilato, M.J. (1985) The influence of texture on clay weathering and soil formation in mid-northern Ontario. Appl. Clay Sci. 1, 4355.CrossRefGoogle Scholar
Protz, R., Ross, G.J., Shipilato, M.J. & Terasmae, J. (1988) Podzolic soil development in the southern James Bay lowlands, Ontario. Can. J. Soil Sci. 68, 287305.CrossRefGoogle Scholar
Righi, D., Petit, S. & Bouchet, A. (1993) Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a cryorthod. Clays Clay Miner. 41, 484495.CrossRefGoogle Scholar
Righi, D., Ranger, J. & Robert, M. (1988) Clay minerals as indicators of some soil forming processes in the temperate zone. Bull. Miner. 111, 625632.CrossRefGoogle Scholar
Righi, D., Räisänen, M.L. & Gillot, F. (1997) Clay mineral transformations in podzolized tills in central Finland. Clay Miner. 32, 531544.CrossRefGoogle Scholar
Robert, M., Razzaghe-Karimi, M.H., Vicente, M.A. & Veneau, G. (1979) Rôle du facteur biochimique dans l'altération des minéraux silicatés. Science du Sol, 23, 153174.Google Scholar
Ross, G.J. & Mortland, M.M. (1966) A soil beidellite. Soil Sci. Soc. Am. Proc. 3, 337343.CrossRefGoogle Scholar
Ross, G.J., Wang, C. Ozkan, A.I. & Rees, H.W. (1982) Weathering of chlorite and mica in a New Brunswick podzol developed on till derived from chlorite-mica schist. Geoderma, 27, 255267.CrossRefGoogle Scholar
Walter, H. & Leith, H. (1960) Klimadiagramm-Weltatlas. Veb Gustav Fischer Verlag, Iena.Google Scholar