Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T01:26:13.224Z Has data issue: false hasContentIssue false

K-Ar dating of illite fundamental particles separated from illite-smectite

Published online by Cambridge University Press:  09 July 2018

N. Clauer
Affiliation:
Centre de Géochimie de la Surface (CNRS), 1 rue Blessig, 67084-Strasbourg, France
J. Środoń
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Senacka 1, 31-002 Krakow, Poland
J. Francu
Affiliation:
Geological Survey, Leitnerova 22, 658 69 Brno, Czech Republic
V. Šucha
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynska dolina, pav. G, 842 15 Bratislava, Slovakia

Abstract

Fundamental particles of illite-smectite from bentonites were separated into classes by high-speed centrifugation after infinite osmotic swelling of mixed-layer crystals, achieved by Na-exchange and dispersion in distilled water. In samples free of detrital contamination, the thinnest fundamental particles yield older K-Ar ages than the thicker fundamental particles. This implies that they do not preferentially lose radiogenic 40Ar due to size, and that the illitization process is a crystal growth mechanism (not nucleation plus growth). As a result, any K-Ar age of fundamental illite particles from bentonites is an integral over longer or shorter periods of time, depending on the thermal history of the rocks. In thick bentonite beds, the measured age difference between the beginning of the illitization process at the contact with the host rocks and the end in the centre of the bed records extremely slow K diffusion in these well compacted rocks. These data explain why measured K-Ar ages of illite-smectite from bentonites are younger than the corresponding age of shale illitization, inferred from the burial history of the basin. The finest technically separable size-fractions of associated shales (<0.02 μm) yield K-Ar dates* greater than the stratigraphic age. This observation points to incomplete recrystallization of detrital illite during burial diagenesis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S.P., Whitney, G. & Aronson, J.L. (1984) Model for K-bentonite formation: Evidence from zoned Kbentonites in the disturbed belt, Montana. Geology 12, 412415.2.0.CO;2>CrossRefGoogle Scholar
Amirkhanov, K.I., Brandt, S.B. & Bartnitsky, E.I. (1961) Radiogenic argon in minerals and its migration. Geochronology in Rock Systems. Ann. N. Y. Acad. Sci. 91, 235275.Google Scholar
Aronson, J.L. & Douthitt, C.B. (1986) K/Ar systematics of an acid-treated illite-smectite: Implications for evaluating age and crystal structure. Clays Clay Miner. 34, 473482.Google Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique de l'Institut de Géologie, Univ. Strasbourg, 3, 53 pp.Google Scholar
Clauer, N. & Chaudhuri, S. (1995) Clays in Crustal Environments. Isotope Dating and Tracing. Springer Verlag, Berlin, Heidelberg.Google Scholar
Clauer, N., Giblin, P. & Lucas, J. (1984) Sr and Ar isotope studies of detrital smectites from the Atlantic Ocean (DSDP, Legs 43, 48, and 50). lsot. Geosci. 2, 141151.Google Scholar
Eberl, D.D. & Srodon, J. (1988) Ostwald ripening and interparticle diffraction effects of illite crystals. Am. Miner. 73, 13351345.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, Mid-Norwegian continental shelf. Clay Miner. 24, 233253.CrossRefGoogle Scholar
Evernden, J.F., Curtis, G.H., Obradovich, J. & Kistler, R. (1961) On the evaluation of glauconite and illite for dating sedimentary rocks by the potassium-argon method. Geochim. Cosmochim. Acta 23, 78–99.Google Scholar
Ghosh, P.K. (1972) Use of bentonites and glauconites in potassium 40∼argon 40 dating in Gulf Coast stratigraphy. PhD thesis, Univ. Houston, USA.Google Scholar
Hay, R.L., Lee, M., Kolata, D.R., Mattthews, D.R. & Morton, J.P. ( 1988) Episodic potassic diagenesis of Ordovician tufts in the Mississippi Valley area. Geology 16, 743747.2.3.CO;2>CrossRefGoogle Scholar
Hoffman, J., Hower, J. & Aronson, J.L. (1976) Radiometric dating of time of thrusting in the disturbed belt of Montana. Geology 4, 16–20.2.0.CO;2>CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Hurley, P.M., Cormier, R.F., Hower, J., Fairbairn, H.W. & Pinson, W.H. (1960) Reliability of glauconite for age measurements by K-At and Rb-Sr methods. Am. Assoc. Petrol. Geol. Bull. 44, 1793-1808.Google Scholar
Inoue, A., Kohyama, N. & Kitagawa, R. (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner. 35, 111120.Google Scholar
Jackson, M.L. (1975) Soil Chemical Analysis. Advanced Course. 2nd Edn., Madison WI.Google Scholar
Jennings, S. & Thompson, G.R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California. J. Sed. Pet. 56, 8998.Google Scholar
Krat, M., Lizon 1. & Janci, J. (1985) Geothermal research of Slovakia. Manuscript, Geofond, Brastislava (in Slovak).Google Scholar
Morton, J.P. (1985) RblSr evidence for punctuated illitesmectite diagenesis in the Oligocene Frio Formation, Texas, Gulf Coast. Geol. Soc. Am. Bull. 96, 10431049.Google Scholar
Mudge, M.R. (1970) Origin of the disturbed belt in northwestern Montana. Geol. Soc. Am. Bull. 81, 377392.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J.M. (1984) Interstratified clays as fundamental particles. Science 225, 923925.Google Scholar
Odin, G.S. (1975) Les glauconies: Constitution, formation, age. These Doc-es-Sci, Univ. Paris V1, France.Google Scholar
Odin, G.S. & Bonhomme, M.G. (1982) Argon behaviour in clays and glauconies during preheating experiments. Pp. 333–343 in: Numerical Dating in Stratigraphy, (Odin, G.S., editor) John Wiley, New York.Google Scholar
Odin, G.S., Velde, B. & Bonhomme, M.G. (1977) Radiogenic argon retention in glauconites as a function of mineral recrystallization. Earth Planet. Sci. Lett, 37, 154158.CrossRefGoogle Scholar
Perry, E.A. (1974) Diagenesis and the K-Ar dating of shales and clay minerals. Geol. Soc. Am. Bull. 85, 827830.Google Scholar
Pevear, D.R. (1992) Illite age analysis. A new tool for basin thermal history analysis. Pp. 1251 – 1254 in: Proc. 7th Int. Sym. Water-Rock Interactions, (Kharaka, Y.K. & Maest, A.S., editors), Park City, Utah.Google Scholar
Polevaya, N.I., Murina, G.A. & Kazakov, G.A. (1961) Utilization of glauconite in absolute dating. Pp. 298–310 in: Geochronology of Rock Systems, Ann. N. Y. Acad. Sci., 91.CrossRefGoogle Scholar
Reuter, A. (1987) Implications of K-Ar ages of wholerock and grain-size fractions of metapelites and intercalated metatuffs within an anchizonal terrane. Contrib. Miner. Petrol. 97, 105115.CrossRefGoogle Scholar
Rudinec, R. (1978) Paleogeographical, lithofacial and tectogenetic development of the Neogene in Eastern Slovakia and its relation to volcanism and deep tectonics. Geol. Carpath. 28, 225240.Google Scholar
Sardarov, S.S. (1963) Preservation of radiogenic argon in glauconites. Geochem. Int. 10, 937944.Google Scholar
Środoń, J. (1980) Precise identification of illite-smectite interstratifications by X-ray powder diffraction. Clays Clay Miner. 28, 401411.CrossRefGoogle Scholar
Środoń, J. (1981) X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite. Clay Miner. 16, 297304.Google Scholar
Środoń, J. (1984) X-ray identification of illitic materials. Clays Clay Miner. 32, 337349.Google Scholar
Środoń, J. (1995) Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite-smectite in shales. Stud. Geol. Polon. 108, 920.Google Scholar
Środoń, J., Elsass, F., McHardy, W.J. & Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner. 27, 137158.Google Scholar
Środoń, J., Morgan, D.J., Eslinger, E.V., Eberl, D.D. & Karlinger, M.R. (1986) Chemistry of illite-smectite and end-member illite. Clays Clay Miner. 34, 368378.Google Scholar
Steiger, R.H. & Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359362.Google Scholar
Sucha, V., Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Miner. 28, 243253.CrossRefGoogle Scholar
Thompson, G.R. & Hower, J. (1973) An explanation for low radiometric ages from glauconite. Geochim. Cosmochim. Acta 37, 14731491.Google Scholar
Tissot, B. & Espitalié, J. (1975) L'évolution thermique de la matière organique des sédiments. Applications d'une simulation mathématique. Rev. Inst.fr. Pétrole 30, 743777.Google Scholar
Veblen, D.R., Guthrie, G.D., Livi, K.J.T. & Reynolds, R.C. (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illitesmectite: Experimental results. Clays Clay Miner. 38, 113.Google Scholar
Welte, D.H., Yukler, M.A., Radke, M. & Leythaeuser, D. (1981) Application of organic geochemistry and quantitative basin analysis to petroleum exploration. Pp, 67–88 in: Origin and Chemistry of Petroleum (Atkinson, G. & Zuckerman, J., editors), Pergamon Press.Google Scholar
Zimmermann, J.L. & Odin, G.S. (1982) Kinetics of the release of argon and fluids from glauconies. Pp. 345–362 in: Numerical Dating in Stratigraphy, (Odin, G.S., editor), John Wiley, New York.Google Scholar
Zwingmann, H. (1995) Etude des conditions de mise en place des gaz naturels clans les réservoirs gréseux (Rotliegende d'Allemagne). Aspects minéralogiques, morphologiques, géochimiques et isotopiques. PhD thesis, Univ. Strasbourg, France.Google Scholar