Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T03:25:35.190Z Has data issue: false hasContentIssue false

Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany

Published online by Cambridge University Press:  09 July 2018

H. A. Gilg*
Affiliation:
Fakultät Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
B. Weber
Affiliation:
Division de Ciencias de la Terra, CICESE, 22830 Ensenada, Baja California, Mexico
J . Kasbohm
Affiliation:
Institut für Geologische Wissenschaften, Ernst Moritz Arndt-Universität Greifswald, Friedrich-Ludwig-Jahnstr. 17a, 17489 Greifswald, Germany
R. Frei
Affiliation:
Geologisk Institut, Københavens Universitet, Øster Voldgade 10, 1350 CopenhagenDenmark
*

Abstract

Residual clays that developed on Permian and Carboniferous glass-rich silicic volcanic rocks (pitchstones, ignimbrites) at the Seilitz and Kemmlitz kaolin deposits, Saxony, Eastern Germany, contain locally abundant lath-shaped illite-rich illite-smectite mixed-layer minerals (I-S). Analyses by XRD and TEM-AES reveal a large illite percentage (>∼90%) and R3 ordering in I-S from Seilitz (>∼90%) and smaller illite percentage (∼70%) and R1 ordering in I-S from Kemmlitz. The clays never suffered a deep burial and there is no geological, petrographic or fluid inclusion evidence for aeolian input or hydrothermal origin of I-S at either deposit. The I-S formed exclusively at the expense of volcanic glass and not from K-feldspar. Residual quartz phenocrysts in the clays still preserve primary glassy silicate melt inclusions and lack secondary aqueous fluid inclusion trails. The dD and δ18O values of kaolinite and I-S are suggestive of low formation temperatures (<40ºC). Rb-Sr and K-Ar dating of I-S-bearing clay separates yield Lower Cretaceous ages at Seilitz and indicates the presence of excess or inherited 40Ar in illite-rich I-S. In contrast, Triassic to Jurassic Rb-Sr ages are obtained for I-S from the Kemmlitz kaolin deposit.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P. & Helgeson, H.C. (1983) Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays. Clays and Clay Minerals, 31, 207217.Google Scholar
Alderton, D.H.M. & Fallick, A.E. (2000) The nature and genesis of gold-silver-tellurium mineralization in the Metali feri Mounta ins of Western Romania. Economic Geology, 95, 495538.Google Scholar
Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanism of smectite illitization. Clays and Clay Minerals, 45, 517 533.CrossRefGoogle Scholar
Jr.Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Podwysocki, M.H., McKee, E.H. & Tosdal, R.M. (1995) Geology, geochronology, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology, 90, 795 822.CrossRefGoogle Scholar
Bauer, A. & Velde, B. (1999) Smectite transformation in high molar KOH solutions. Clay Minerals, 34, 259273.CrossRefGoogle Scholar
Bauer, A., Velde, B. & Gaupp, R. (2000) Experimental constraints on illite crystal morphology. Clay Minerals, 35, 587597.Google Scholar
Berkgaut, V., Singer, A. & Stahr, K. (1994) Palagonite reconsidered: paracrystalline illite-smectite from regoliths on basaltic pyroclastics. Clays and Clay Minerals, 42, 582592.CrossRefGoogle Scholar
Bigeleisen, J., Perlman, M.L. & Prosser, H.C. (1952) Conversion of hydrogenic materials to hydrogen for isotopic analysi s. Analytic al Chemistr y, 24, 13561357.Google Scholar
Chivas, A.R., O’Neil, J.R. & Katchan, G. (1984) Uplift and submarine formation of some Melanesian porphyry copper deposits: stable isotope evidence. Earth and Planetary Science Letters, 68, 326334.CrossRefGoogle Scholar
Clauer, N. & Chaudhuri, S. (1995) Clays in Crustal EnvironmentsIsotope Dating and Tracing. Springer, Berlin.CrossRefGoogle Scholar
Clauer, N., Chaudhuri, S., Kralik, M. & Bonnot-Courtois, C. (1993) Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chemical Geology, 103, 116.Google Scholar
Clayton, R.N. & Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicate s for isot opic analy si s. Geochmicia et Cosmochimica Acta, 27, 4352.Google Scholar
Deconinck, J.F., Strasser, A. & Debrabant, P. (1988) Formation of illitic minerals at surface temperatures in Purbeckian sediments. Clay Minerals, 23, 91103.Google Scholar
Eberl, D.D., Velde, B. & McCormick, T. (1993) Synthesis of illite-smectite from smectite at Earth surface temperatures and high pH. Clay Minerals, 28, 4960.Google Scholar
Garrels, R.M. (1984) Montmorillonite/ illite stability diagrams. Clays and Clay Minerals, 32, 161 166.CrossRefGoogle Scholar
Garvie, L.A.J. & Long, L.E. (1995) Clay mineralogy and Rb-Sr dating of a relict soil developed on Precambrian schists, North-Eastern Llano Uplift, Central Texas. Pp. 504509 in: Clays Controlling the Environment (Churchman, G.J., Fitzpatrick, R.W. & Eggleton, R.A., editors). Proceedings of the 10th International Clay Conference, Adelaide, CSIRO Publishing, Melbourne.Google Scholar
Gilg, H.A. (2000) D-H evidence for the timing of kaolinizati on in Northeast Bavaria, Germany. Chemical Geology, 170, 518.CrossRefGoogle Scholar
Gilg, H.A. & Frei, R. (1994) Chronology of magmatism and mineralization in the Kassandra mining area (Greece): The potentials and limitations of dating hydrothermal illites. Geochimica et Cosmochimica Acta, 58, 21072122.Google Scholar
Gilg, H.A. & Frei, R. (1997) Isotope dating of residual kaolin deposits in Europe (Tirschenreuth, Germany and St. Yrieix, France). Pp. 123 132 in: Energy and Mineral Resources for the 21st Century, Geology of Mineral Deposits, Mineral Economics (Rongfu, P., editor). Proceedings of the 30th Internationa l Geologic al Congres s, Beijing, Vol. 9, VSP International Science Publisher, Zeist.Google Scholar
Gilg, H.A., Haus, R. & Frei, R. (1997) A new illite deposit near le-Puy-en-Velay (France) – Genesis and Usage for Waste Encapsulation. Pp. 717720 in: Mineral Deposits: Research and Exploration – Where do they Meet? (Papunen, H., editor). Proceedings of the 4th Biennial SGA Meeting, Turku, Finland, Balkema, Rotterdam.Google Scholar
Gilg, H.A., Hülmeyer, S., Miller, H. & Sheppard, S.M.F. (1999) Supergene origin of the Lastarria kaolin deposit, South-Central Chile, and paleoclimatic implications. Clays and Clay Mineral s, 47,201 –211.Google Scholar
Hak, J., Johan, Z., Kvaček, M. & Liebscher, W. (1969) Kemmlitzite, a new mineral of the woodhouseite group. Neue s Jahrbuch fûr Mineralogie, Monatshefte, 201212.Google Scholar
Hedenquist, J.W., Matsuhisa, Y., Izawa, E., White, N., Giggenbach, W.F. & Aoki, M. (1994) Geology, geochemistry, and origin of high-sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Economic Geology, 89, 1 30.Google Scholar
Hedenquist, J.W., Jr.Arribas, A., & Reynolds, T.J. (1998) Evolution of an intrusion-centred hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93, 373404.Google Scholar
Heide, G., Leschik, M. & Frischat, G.H. (2001) Pechstein. Teil 1: Ein wasserreich glasig erstarrter, vulkanischer Gesteinstyp. Chemie der Erde, 61, 187213.Google Scholar
Henning, K.-H. & Störr, M. (1986) Electron micrographs (TEM, SEM) of clays and clay mine ral s. Schriftenreihe für Geologische Wissenschafte n (Berlin), 25, 1350.Google Scholar
Imbert, T. & Despairies, A. (1987) Neoformation of halloysite on volcanic glass in a marine environment. Clay Minerals, 22, 179185.Google Scholar
Jackson, N.J., Halliday, A.N., Sheppard, S.M.F. & Mitchell, J.G. (1982) Hydrothermal activity in the St. Just mining district, Cornwall, England. Pp. 137179 in: Metallisation Associated with Acid Magmatism (Evans, A.M., editor). John Wiley & Sons, London.Google Scholar
Jeans, C.V., Mitchell, J.G., Scherer, M. & Fisher, M.J. (1994) Origin of the Permo-Triassic clay mica assemblage. Clay Minerals, 29, 575589.CrossRefGoogle Scholar
Jones, B.F. & Weir, A.H. (1983) Clay minerals of Lake Abert, an alkaline, saline lake. Clays and Clay Minerals, 31, 161172.Google Scholar
Kenj, H. (1990) Angewandte geologisch-mineralogisch und technologische Untersuchungen am Seilitzer Kaolin. Dissertation thesis, Univ. Greifswald, Germany.Google Scholar
Kenj, H., Zwahr, H. & Störr, M. (1990) Zum Vorkommen von Baryt in kaolinisierten Pechsteinen von Meißen. Zeitschrift für geologische Wissenschaften, 18, 282288.Google Scholar
Kirsimäe, K. & Jørgensen, P. (2000) Mineralogical and Rb-Sr isotope studies of low-temperature diagenesis of Lower Cambrian clays of North Estonia. Clays and Clay Minerals, 48, 95105.Google Scholar
Kirsimäe, K., Jørgensen, P. & Kalm, V. (1999) Lowtemperature diagenetic illite-smectite in Lower Cambrian clays of the Baltic palaeobasin of North Estonia. Clay Minerals, 34, 151163.Google Scholar
Kossovskaya, A.G. & Drits, V.A. (1970) The variability of micaceous minerals in sedimentary rocks. Sedimentology, 15, 83101.Google Scholar
Kranz, G., Machajdik, D. & Wiegmann, J. (1978) Zur Variation des chemischen und strukturellen Aufbaus des Wechsellagerungsminerals im Seilitzer Kaolin. Schriftenre ihe für geologische Wissenschaf ten (Berlin), 11, 115 123.Google Scholar
Kužvart, M. & Konta, J. (1968) Kaolin and laterite weathering crusts in Europe. Acta Universitatis Carolinae – Geologica, 1, 119.Google Scholar
Lange, J.-M. & Heide, K. (1996) Pitchstone, rhyolite and kaolin near Meißen, Saxony. Chemie der Erde, 56, 511 521.Google Scholar
Lowe, D.J. (1986) Controls on the rates of weathering and clay mineral genesis in airfall tephras: a review and New Zealand case study. Pp. 265330 in: Rates of Chemical Weathering of Rocks and Minerals. (Colman, S.M. & Dethier, D.P., editors). Academic Press, Orlando, Florida.Google Scholar
Marumo, K. & Hattori, K.H. (1999) Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotopecharacteristics. Geochimicaet Cosmochimica Acta, 63, 27852804.CrossRefGoogle Scholar
Marumo, K., Longstaffe, F.J. & Matsubaya, O. (1995) Stable isotope geochemistry of clay minerals from fossil and active hydrothermal systems, southwestern Hokkaido, Japan. Geochimica et Cosmochimica Acta, 59, 25452559.Google Scholar
Menegatti, A.P., Früh-Green, G.L. & Stille, P. (1999) Removal of organic matter by disodium peroxodisulphate: effects on mineral structure, chemical composition and physicochemical properties of some clay minerals. Clay Minerals, 34, 247257.Google Scholar
Migoń, P. & Lidmar-Bergström, K. (2001) Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth-Science Reviews, 56, 285324.CrossRefGoogle Scholar
Mora, C.I., Sheldon, B.T., Elliot, W.C. & Driese, S.G. (1998) An oxygen isotope study of illite and calcite in three Appalachian Paleozoic vertic paleosols. Journal of Sedimentary Research, 68, 456464.Google Scholar
Morton, J.P. (1985) Rb-Sr evidence for punctuated illite/ smectite diagenesis in the Oligocene Frio Formation, Texas Gulf Coast. Geological Society of America Bulletin, 96, 114 122.2.0.CO;2>CrossRefGoogle Scholar
Poppek, K., Blankenburg, H.-J. & Pentzel, A. (1990) Freisetzung, Migration und Fixierung von SiO2 bei der kaolinitischen Verwitterung. Zeitschrift für geologische Wissenschaften, 18, 1117 1126.Google Scholar
Radczewski, O.E. & Balden, H.J. (1959) Röntgenographische und elektronenoptische Untersuchungen an der Schlettaer Erde. Fortschritte der Mineralogie, 37, 7478.Google Scholar
Reinisch, R. (1928) Erläuterungen zur Geologische Karte von Sachsen im Maßstab 1:25000, Blatt Meißen, No.48, 3. Aufl. Sächsisches Geologisches Landesamt, Leipzig, Germany.Google Scholar
Richter, W. (1986) Deuterium and oxygen-18 in Central European groundwaters. Proceedings of the 4th Working Meeting on Isotopes in Nature, Leipzig, pp. 553 572.Google Scholar
Roedder, E., editor (1984) Fluid Inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, Washington, D.C.Google Scholar
Röllig, G. (1976) Zur Petrogenese und Vulkantektonik der Pyroxen-Quarzporphyre (Ignimbrite) des Nordsächsischen Vulkanitkomplexes. Jahrbuch für Geologie, 5, 175 268.Google Scholar
Rösler, H.J., Pilot, J. & Starke, R. (1976) Neue Untersuchungenzur Altersstellungdes Kaolini sierung svorgangs. Zeit schrift für Angewandte Geologie, 22, 393398.Google Scholar
Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. (1993) Isotopic patterns in modern global precipitation. Pp. 136 in. Climate Change in Continental Isotopic Records (P.K. Swart, K.C. Lohmann, J. McKenzie & S. Savin, editors). Geophysical Monograph 78, American Geophysical Union, Washington, D.C.Google Scholar
Savin, S.M. & Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 2542.Google Scholar
Savin, S.M. & Hsieh, J.C.C. (1998) The hydrogen and oxygen isotope geochemistry of pedogenic clay minerals: principles and background. Geoderma, 82, 227253.CrossRefGoogle Scholar
Schwerdtner, G. & Störr, M. (1983) Die Kaolinlagerstätten des Gebietes Kemmlitz/Bezirk Leipzig, Genese, Geologie und Stoffbestand, wirtschaf tliche Bedeutung . Silikatte chnik, 34, 169174.Google Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 124.Google Scholar
Sheppard, S.M.F. & Gustafson, R.L. (1967) Oxygen and hydrogen isotopes in the porphyry copper deposit at El Salvador, Chile. Economic Geology, 71, 15491559.Google Scholar
Sheppard, S.M.F., Nielsen, R.L. & Jr.Taylor, H.P., (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 64, 755777.Google Scholar
Shoji, S., Yamada, I. & Kurashima, K. (1981) Mobilities and related factors of chemical elements in the topsoils of Andosols in Tohuku, Japan. 2. Chemical and mineralogical compositions of size fractions and factors influencing the mobilities of major elements. Soil Science, 132, 330 346.Google Scholar
Singer, A. (1988) Illite in aridic soils, desert dusts and desert loess. Sedimentary Geology, 59, 251259.Google Scholar
Singer, A. & Stoffers, P. (1980) Clay mineral diagenesis in two East African lake sediments. Clay Minerals, 15, 291307.Google Scholar
Spry, P.G., Paredes, M.M., Foster, F., Truckle, J.S. & Chadwick, T.H. (1996) Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana: fluid inclusion and stable isotope studies. Economic Geology, 91, 507526.CrossRefGoogle Scholar
Środoń, J. (1999) Use of clay minerals in reconstructing geological processes: recent advances and some perspectives. Clay Minerals, 34, 2737.CrossRefGoogle Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495 544 in. Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Starke, R. (1976) Verteilung, Bildung und Umwandlungder Tonminerale in Sedimentgesteinen. Schriftenreih e für Geologische Wissenschafte n (Berlin), 5, 213 222.Google Scholar
Störr, M., editor (1975) Kaolin Deposits of the GDR in the Northern Region of the Bohemian Massif. Ernst- Moritz-Arndt-Universit ä t Greifswald, Sektion Geologische Wissenschaften, Greifswald.Google Scholar
Störr, M. (1983) Die Kaolinlagerstätten der Deutschen Demokratischen Republik. Schriftenreihe für Geologische Wissenschaften (Berlin), 18, 1226.Google Scholar
Störr, M. & Schwerdtner, G. (1966) Mineralogische und technologische Untersuchungen an Kaolinen aus dem Raum Kemmlitz/Sachsen. Bericht e der deutschen keramischen Gesellschaft, 43, 539 546.Google Scholar
Störr, M., Schwerdtner, G., Helmchen, H. & Baburek, J. (1967) Mine ralogische und technologi sche Untersuc hungen des Kaolins von Seilitz bei Meißen. Silikattechnik, 18, 150156.Google Scholar
Störr, M., Schwerdtner, G. & Buchwald, J. (1969) Kaolinlagerstätten der Deutschen Demokratischen Republik. Pp. 107140 in: Kaolin deposits of the world A – Europe (J. Vachtl, editor). 23rd International Geological Congress, Prague, Vol. 15, Academia, Prague.Google Scholar
Störr, M., Kužvart, M. & Neuzil, J. (1978) Age and genesis of the weathering crust of the Bohemian Massif. Schriftenreihefür Geologische Wissenschaften (Berlin), 11, 265282.Google Scholar
Störr, M., Ha, N.T. & Zwahr, H. (1979) Vorkommen von Zeolithen (Klinoptilolith und Mordenit) in natürlichen Umwandlungsprodukten des Pechsteins von Garsebach bei Meißen. Zeitschrift für geologische Wissenschaften, 7, 14551456.Google Scholar
Šucha, V., Środoń, J., Clauer, N., Elsass, F., Eberl, D.D., Kraus, I. & Madejová J. (2001) Weathering of smectite and illite-smectite under temperate climatic conditions. Clay Minerals, 36, 403419.Google Scholar
Tribble, J.S. & Yeh, H.-W. (1994) Origin of smectite and illite-smectite in the Barbados accretionary complex: Oxygen isotope evidence. Geology, 22, 219222.Google Scholar
Velde, B. (1995, Editor) Origin and Mineralogy of ClaysClays and the Environment. Springer, Berlin.CrossRefGoogle Scholar
Vrolijk, P., Pevear, D. & Longstaffe, F. (1994) Mechani sms for low-temperatur e I/S in the Barbados accretionary prism. 31st Annual Meeting of the Clay Minerals Society, Saskatoon, Program and Abstracts, p. 46.Google Scholar
Wenzel, T. (1999) Mantel- und Krustenkomponenten in den Granitoiden des Meißener Massivs (Elbezone). Zeitschrift für geologische Wissenschaften, 27, 417426.Google Scholar
Wilkinson, M. & Haszeldine, R.S. (2002) Fibrous illite in oilfield sandstones – a nucleation kinetic theory of growth. Terra Nova, 14, 5660.Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 725.Google Scholar
Yapp, C.J. (2000) Climatic implications of surface domains in arrays of δD and δ18O from hydroxyl minerals: goethite as an example. Geochimica et Cosmochimica Acta, 64, 20092025.Google Scholar
Ylagan, R.F., Altaner, S.P. & Pozzuoli, A. (1996) Hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy. Journal of Volcanology and Geothermal Research, 74, 215231.Google Scholar
Zheng, Y.-F. (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247263.Google Scholar
Zöller, M.H. (1993) Charakter isierung von Illit- Einkristallen durch konvergente Elektronenbeugung (TEM). Beric hte der Deutschen Ton- und Tonmineralgruppee.V., DTTG 1993, 211220.Google Scholar
Zwahr, H. (1977) Die Verwitterung des Meißner Pechsteins und seine experimentelle hydrothermale Umwandlung. Dissertation thesis, Univ. Greifswald, Germany.Google Scholar