Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T09:56:23.276Z Has data issue: false hasContentIssue false

Iron-bearing smectites: a revised relationship between structural Fe, b cell edge lengths and refractive indices

Published online by Cambridge University Press:  09 July 2018

M. Heuser*
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, D-52072 Aachen, Germany
P. Andrieux
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA, 6 rue Michel Brunet, F-86022 Poitiers Cedex, France
S. Petit
Affiliation:
Université de Poitiers, CNRS UMR 7285 IC2MP, HydrASA, 6 rue Michel Brunet, F-86022 Poitiers Cedex, France
H. Stanjek
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstrasse 8, D-52072 Aachen, Germany
*

Abstract

Structural iron in smectites correlates with the cell edge length b and increases the refractive index. The cell edge length b is usually obtained from the position of the (060) reflection, but in this work we show that such b values differ from the values obtained from Rietveld fits because contributions from (hkl) reflections shift the position of the (060) reflection. The correlation between Fe and cell edge length b was significant (r2 > 0.99); the relationship is b [Å] = 8.9977(0.0035) + 0.1117(0.0032) × Fetot. Furthermore, we present for the first time measurements of the refractive index n of Fe-bearing smectites, applying a recently published turbidity method (Weidler & Friedrich, 2007). The refractive index correlates both with structural iron (r2 = 0.64) and with b (r2 = 0.94).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrieux, P. & Petit, S. (2010) Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series Part I: Influence of experimental conditions. Applied Clay Science, 48, 5–17.Google Scholar
Bambauer, H.U., Taborsky, F. & Trochim, H.D. (1971) Optische Bestimmung der gesteinsbildenden Minerale, Teil 1, Bestimmungstabellen. 4th edition. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
Bérend, I., Cases, J.-M., François, M., Uriot, J.-P., Michot, L., Masion, A. & Thomas, F. (1995) Mechanisms of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324–336.Google Scholar
Bergmann, J. & Kleeberg, R. (1998) Rietveld analysis of disordered layer silicates. Materials Science Forum, 278-281, 300–305.Google Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177–186.Google Scholar
Caseri, W.R. (2006) Nanocomposites of polymers and inorganic particles: preparation, structure and properties. Materials Science and Technology, 22, 807–817.Google Scholar
Champion, J.D., Meeten, G.H. & Malcom, S. (1978) Refractive index of particles in the colloidal state. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 74, 1319–1329.Google Scholar
Cuadros, J. (2012) Clay crystal-chemical adaptability and transformation mechanisms. Clay Minerals, 47, 147–164.Google Scholar
Deer, W., Howie, R.A. & Zussman, J. (1996) An Introduction to the Rock-forming Minerals. Longmans.Google Scholar
Desprairies, A. (1983) Relation entre le parametre b des smectites et leur contenu en fer et magnesium. Application a l’etude des sediments. Clay Minerals, 18, 165–175.Google Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Minerals, 12, 181–194.Google Scholar
Ferrage, E., Lanson, B., Sakharov, B.A. & Drits, V.A. (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns. Part I: montmorillonite hydration properties. American Mineralogist, 90, 1358–1374.CrossRefGoogle Scholar
Friedrich, F., Steudel, A. & Weidler, P.G. (2008) Change of the refractive index of illite particles by reduction of the Fe content of the octahedral sheet. Clays and Clay Minerals, 56, 505–510.Google Scholar
Güven, N. (2009) Bentonites – clays for molecular engineering. Elements, 5, 89–92.Google Scholar
Hiemenz, P.C. & Rajagopalan, R. (1997) Principles of Colloid and Surface Chemistry. 3rd edition. Marcel Dekker Inc. Google Scholar
Jepson, W. (1988) Structural iron in kaolinites and in associated ancillary minerals. In: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors), chapter 15. NATO ASI Series, 1988, 467–536.Google Scholar
Kaufhold, S., Dohrmann, R., Ufer, K., Kleeberg, R. & Stanjek, H. (2011) Termination of swelling capacity of smectites by Cutrien exchange. Clay Minerals, 46, 411–420.Google Scholar
Köster, H.M. (1977) Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Minerals, 12, 45–54.Google Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579–599.Google Scholar
Marchel, C. (2008) Untersuchungen zur Dehydroxylierung dioktaedrischer Smectite. Ph.D. thesis, RWTH Aachen University.Google Scholar
Radoslovich, E. (1962) The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations. American Mineralogist, 47, 617–636.Google Scholar
Ravina, I. & Low, P.F. (1977) Change of b-dimension with swelling of montmorillonite. Clays and Clay Minerals, 25, 201–204.Google Scholar
Stanjek, H. & Marchel, C. (2008) Linking the redox cycles of iron oxides and Fe-rich clay minerals: an example from a palaeosol of the Upper Freshwater Molasse. Clay Minerals, 43, 69–82.Google Scholar
Tasic, A., Djordjevic, B., Grozdanic, D.K. & Radojkovic, N. (1992) Use of mixing rules in predicting refractive indices and specific refractivities for some binary liquid mixtures. Journal of Chemical Engineering, 37, 310–313.Google Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R. & Bergmann, J. (2004) Description of X-ray powder patterns of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519–527.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272–282.Google Scholar
Weidler, P.G. & Friedrich, F. (2007) Determination of the refractive index of particles in the clay and submicrometer size range. American Mineralogist, 92, 1130–1132.Google Scholar
Wilcox, R.E. (1984) Optical properties of micas under the polarizing microscope. Pp. 183–200 in: Micas (S. Bailey, editor), Reviews in Mineralogy, 13, chapter 6. Mineralogical Society of America.Google Scholar