Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T13:30:50.011Z Has data issue: false hasContentIssue false

Interactions of imidacloprid with organicand inorganic- exchanged smectites

Published online by Cambridge University Press:  09 July 2018

L. Cox
Affiliation:
Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Apartado 1052, Sevilla 41080, Spain
M. C. Hermosin*
Affiliation:
Instituto de Recursos Naturales y Agrobiologia de Sevilla, CSIC, Apartado 1052, Sevilla 41080, Spain
W. C. Koskinen
Affiliation:
Soil Water Management Research Unit, ARS-USDA, 1991 Upper Buford Circle, St Paul, Minnesota 55108, USA

Abstract

Sorption of the polar insecticide imidacloprid on organic-saturated octadecylammonium (C18) and dioctadecyldimethylammonium (DOD) and inorganic- (Fe- ) saturated Wyoming (W) and Arizona (A) montmorillonites has been investigated. Sorption isotherms were fitted to the Freundlich equation. Imidacloprid-montmorillonite complexes were studied by X-ray diffraction and FT-IR techniques. Imidacloprid sorption coefficients, Kf, decreased in the order WC18> AC18> WFe> WDOD≥ ADOD. The low layer charge and saturation by primary alkylammonium cation facilitates sorption of imidacloprid in the interlayer of the smectite, corroborated by the increase in basal spacing observed in X-ray diffraction patterns and by the presence of absorption band shifts in FT-IR spectra. Imidacloprid sorbs in the interlayer space of smectite mainly by hydrophobic interactions with the alkyl chains in organic smectites and with the uncharged siloxane surface in Fe(III)-smectite. Further polar bonds between the NO2 group of imidacloprid and the NH of the primary alkyl cations and protonation of imidacloprid in Fe-smectites enhanced sorption in these cases.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguer, J.P., Hermosín, M.C., Calderón, M.J. & Cornejo, J. (2000) Fenuron sorption on homoionic natural and modified smectites. J. Environ. Sci. Health B, 35, 279–296.Google Scholar
Beck, A.J. , Johnston, A.E.J. & Jones, K.C. (1993) Movement of nonionic organic chemicals in agricultural soils. Crit. Rev. Environ. Sci. Tecnol. 23, 219–248.Google Scholar
Bellamy, L.J (1980) The Infrared Spectra of Complex Molecules, Vol. 1. Chapman & Hall, London and New York.Google Scholar
Carrizosa, M.J., Calderón, M.J., Hermosín, M.C. & Cornejo, J. (2000) Organosmectites as sorbent and carrier of the herbicide bentazone. Sci. Total Environ. 247, 285–293.Google Scholar
Celis, R., Cornejo, J., Hermosín, M.C. & Koskinen, W.C. (1998) Sorption of atrazine and simazine by model associations of soil colloids. Soil Sci. Soc. Am. J. 62, 165–171.Google Scholar
Celis, R., Koskinen, W.C., Hermosín, M.C., Ulibarri, M.A. & Cornejo, J. (2000) Triadimefon interactions with organoclays and organohydrotalcites. Soil Sci. Soc. Am. J. 64, 36–43.Google Scholar
Cox, L. , Hermosín, M.C. & Cornejo, J. (1994) Interactions of methomyl with montmorillonites. Clay Miner. 29, 767–774.Google Scholar
Cox, L., Hermosín, M.C. & Cornejo, J. (1995) Adsorption mechanisms of thiazafluron in mineral soil clay components. Eur. J. Soil Sci. 46, 431–438.Google Scholar
Cox, L., Koskinen, W.C. & Yen, P.Y. (1997) Sorptiondesorption of imidacloprid and its metabolites in soils. J. Agric. Food Chem. 45, 1468–1472.CrossRefGoogle Scholar
Cox, L., Koskinen, W.C. & Yen, P.Y. (1998a) Influence of soil properties on sorption-desorption of imidacloprid. J. Environ. Sci. Health B, 33, 123–134.Google Scholar
Cox, L., Koskinen, W.C., Yen, P.Y., Hermosín, M.C. & Cornejo, J. (1998b) Sorption of imidacloprid on soil clay mineral and organic components. Soil Sci. Soc. Am. J. 62, 911–915.Google Scholar
Cox, L., Celis, R., Hermosín, M.C. & Cornejo, J. (2000) Use of natural soil colloids to retard simazine and 2,4-D leaching in soil. J. Agric. Food Chem. 48, 93–99.Google Scholar
El-Nahhal, Y., Nir, S., Polubesova, T., Margulis, L. & Rubin, B. (1998) Leaching, phytotoxicity, and weed control of new formulations of alachlor. J. Agric. Food Chem. 46, 3305–3313.Google Scholar
González-Pradas, E., Fernández-Pérez, M., Villafranca- Sánchez, M., Martínez-Lópes, F. & Flores-Céspedes, F. (1999) Use of bentonite and humic acid as modifying agents in alginate-based controlled-release formulations of imidacloprid. Pestic. Sci. 55, 546–552.Google Scholar
Hermosín, M.C., Roldán, I. & Cornejo, J. (1991) Maleic hydrazide interaction with soil clay surfaces. Chemosphere, 23, 473–483.Google Scholar
Hermosín, M.C. & Cornejo, J. (1992) Removing 2,4-D from water by organo-clays. Chemosphere, 24, 1493–1503.Google Scholar
Hermosín, M.C. & Cornejo, J. (1993) Binding mechanism of 2,4-dichlorophenoxyacetic acid by organoclays. J. Environ. Qual. 22, 325–331 CrossRefGoogle Scholar
Hermosín, M.C., Aguer, J.P., Cornejo, J. & Calderón, M.J. (1997) A slow-release formulation for herbicides:organoclay- fenuron. 11th Int. Clay Conf. Ottawa, Canada. Abstracts, A36.Google Scholar
Jaynes, W.F. and Boyd, S.A. (1991) Clay mineral type and organic compound sorption by hexadecyltrimethylammonium- exchanged clays. Soil Sci. Soc. Am. J. 55, 43–48.Google Scholar
Lagaly, G. & Weiss, A. (1982) Layer charge heterogeneity in vermiculites. Clays Clay Miner. 30, 215–222.Google Scholar
Margulies, L., Stern, T. & Rubin, B. (1994) Slow release of s-ethyl dipropylcarbamothiote from clay surfaces. J. Agric. Food Chem. 46, 1223–1227.Google Scholar
Park, D.J., Jackson, W.R., McKinnon, I.R. & Marzhall, M. (1999) Controlled release of pesticides from microparticles. Pp. 89–136 in: Controlled -Release Delivery Systems for Pesticides (Scher, H.B., editor). Marcel Dekker Inc., New York.Google Scholar
Wagner, J., Chen, H., Brownawell, B.J. & Westall, J.C. (1994) Use of cationic surfactants to modify soil surfaces to promote sorption and retard migration of hydrophobic organic compounds. Environ. Sci. Technol. 28, 231–237 Google Scholar
Xu, S., Sheng, G. & Boyd, S.A. (1997) Use of organoclays in pollution abatement. Adv. Agron. 59, 25–62.Google Scholar
Yelverton, F.H., Weber, J.B., Peedin, G. & Smith, W.D. (1990) Using activated charcoal to inactivate agricultural chemical spills. AG-442, Agricultural Extension Service North Carolina State University, Raleigh, NC, USA.Google Scholar
Zhao, H., Jaynes, W.F. Vance, G.F. (1996) Sorption of the ionizable organic, compound, dicamba (3,6-dichloro- 2-methoxy benzoic acid), by organoclays. Chemosphere, 10, 2089–2100.Google Scholar