Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T07:13:27.808Z Has data issue: false hasContentIssue false

Interactions of ammonium smectite with low-molecular-weight carboxylic acids

Published online by Cambridge University Press:  09 July 2018

M. Gautier*
Affiliation:
CNRS/INSU, Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans-Université de Tours, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
F. Muller
Affiliation:
CNRS/INSU, Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans-Université de Tours, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
J.-M. Beny
Affiliation:
CNRS/INSU, Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans-Université de Tours, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
L. Le Forestier
Affiliation:
CNRS/INSU, Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans-Université de Tours, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
P. Alberic
Affiliation:
CNRS/INSU, Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans-Université de Tours, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
P. Baillif
Affiliation:
CNRS/INSU, Institut des Sciences de la Terre d'Orléans (ISTO), Université d'Orléans-Université de Tours, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
*

Abstract

The percolation of water through waste landfill sites produces leachates with large amounts of pollutants. Clay barriers are often used to limit soil and underground water pollution. A better understanding of the interaction between ammonium smectite and carboxylic acids would contribute significantly to our understanding of such systems. The SWy-2 (Wyoming smectite) was exchanged with NH4+ and then batched with carboxylic acids (acetic, formic, chloroacetic and oxalic) in concentrations between 0.01 M and 1 M. The solid phases obtained were analysed chemically and characterized by infrared absorption spectroscopy (IR) and powder X-ray diffraction (XRD). Ionic chromatography was used for the quantitative measurement of ammonium ions in the solution after the interaction. For the four acids, the interaction was characterized by a cationic exchange of NH4+ to H3O+. A partial exchange to Al3+ due to a partial dissolution of the sample in strong acidic medium was observed with chloroacetic and oxalic acids for which adsorption of molecules on the clay sample occurs, mainly through H-bonding with the cation. Moreover, the intercalation of oxalic acid in the interlayer space was highlighted.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammann, L., Bergaya, F. & Lagaly, G. (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Minerals, 40, 441453.CrossRefGoogle Scholar
Balek, V., Malek, Z., Ehrlicher, U., Györyova, K., Matuschek, G. & Yariv, S. (2002) Emanation thermal analysis of TIXOTON (activated bentonite) treated with organic compounds. Applied Clay Science, 21, 295302.CrossRefGoogle Scholar
Bellamy, L.J. & Pace, R.J. (1963) Hydrogen bonding in carboxylic acids. I. Oxalic acids. Spectrochimica Ada, 19, 435442.CrossRefGoogle Scholar
Bishop, J.L., Banin, A., Mancinelli, R.L. & Klovstad, M.R. (2002) Detection of soluble and fixed NH4+ in clay minerals by DTA and IR reflectance spectroscopy: a potential tool for planetary surface exploration. Planetary and Space Science, 50, 1119.CrossRefGoogle Scholar
Brindley, G.W. & Moll, W.F. (1965) Complexes of natural and synthetic Ca-montmorillonites with fatty acids (clay organic studies-IX). American Mineralogist, 50, 13551370.Google Scholar
Chipera, S.J. & Bish, D.L. (2001) Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clays and Clay Minerals, 49, 398409.CrossRefGoogle Scholar
Chourabi, B. & Fripiat, J.J. (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays and Clay Minerals, 29, 260268.CrossRefGoogle Scholar
Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.-J. & Heron, G. (2001) Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659718.CrossRefGoogle Scholar
Coleman, N.T. & Craig, D. (1961) The spontaneous alteration of hydrogen clay. Soil Science, 91, 1418.CrossRefGoogle Scholar
Davis, L.E., Turner, R. & Whittig, L.D. (1962) Some studies of the autotransformation of H-bentonite to Al-bentonite. Soil Science Society of America Proceedings, 22, 281285.Google Scholar
Eeckman, J. P. & Laudelout, H. (1961) Chemical stability of hydrogen-montmorillonite suspensions. Kolloid Zeitschrift, 178, 99107.CrossRefGoogle Scholar
Ferrage, E., Tournassat, C., Rinnert, E. & Lanson, B. (2005) Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: Analytical chemistry, chemical modelling and XRD profile modelling study. Geochimica et Cosmochimica Ada, 69, 27972812.CrossRefGoogle Scholar
Glaeser, R., Mantin, I. & Mering, J. (1960) Etudes sur Pacidite de la montmorillonite. International Geological Congress, XXI Session, 28-34.Google Scholar
Harmsen, J. (1983) Identification of organic compound in leachate from a waste tip. Water Research, 17, 669705.CrossRefGoogle Scholar
Huang, W.H. & Keller, W.D. (1971) Dissolution of clay minerals in dilute organic acids at room temperature. American Mineralogist, 56, 10821095.Google Scholar
Janek, M. & Komadel, P. (1993) Autotransformation of H-smectites in aqueous solutions. Effect of octahedral iron content. Geologica Carpathica, Series Clays, 44, 5964.Google Scholar
Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A. & Christensen, T.H. (2002) Present and Long- Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology, 32, 297336.CrossRefGoogle Scholar
Komadel, P. (2003) Chemically modified smectites. Clay Minerals, 38, 127138.CrossRefGoogle Scholar
Kruempelbeck, I. & Ehrig, H.-J. (1999) Long term behaviour of municipal solid waste landfills in Germany. Proceedings Sardinia 99, Seventh International Waste Management and Landfill Symposium, 27-36.Google Scholar
Kubicki, J.D., Schroeter, L.M., Itoh, M.J., Nguyen, B.N. & Apitz, S.E. (1999) Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochimica et Cosmochimica Acta, 63, 27092725.CrossRefGoogle Scholar
Leikam, K. & Stegmann, R. (1996) Stellenwert der mechanischbiologischen Restabfallvorbehandlung. Abfallwirtschafts Journal, 9, 3944.Google Scholar
Lin-Vien, D., Colthup, N.B., Fateley, W.G. & Grasselli, J.G. (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York.Google Scholar
Lo, I.M.-C. (1996) Characteristics and treatment of leachates from domestic landfills. Environment International, 22, 433442.CrossRefGoogle Scholar
Max, J.J. & Chapados, C. (2004) Infrared spectroscopy of aqueous carboxylic acids: comparison between different acids and their salts. Journal of Physical Chemistry A, 108, 33243337.CrossRefGoogle Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.CrossRefGoogle Scholar
Metz, V., Amram, K. & Ganor, J. (2005) Stoichiometry of smectite dissolution reaction. Geochimica et Cosmochimica Acta, 69, 17551772.CrossRefGoogle Scholar
Miller, R.J. (1965) Mechanisms for hydrogen to aluminum transformations in clays. Soil Science Society of America Proceedings, 29, 3639.CrossRefGoogle Scholar
Oman, C.B. & Junestedt, C. (2008) Chemical characterization of landfill leachates — 400 parameters and compounds. Waste Management, 28, 18761891.CrossRefGoogle ScholarPubMed
Pelletier, M., Michot, L.J., Barres, O., Humbert, B., Petit, S. & Robert, J.L. (1999) Influence of KBr conditioning on the infrared hydroxyl-stretching region of saponites. Clay Minerals, 34, 439445.CrossRefGoogle Scholar
Petit, S., Righi, D., Madejova, J. & Decarreau, A. (1998) Layer charge estimation of smectites using infrared spectroscopy. Clay Minerals, 33, 579591.CrossRefGoogle Scholar
Petit, S., Righi, D., Madejova, J. & Decarreau, A. (1999) Interpretation of the infrared NH4 + spectrum of the NH4 +-clays; application to the evaluation of the layer charge. Clay Minerals, 34, 543549.CrossRefGoogle Scholar
Pironon, J., Pelletier, M., de Donate, P. & Mosser-Ruck, R. (2003) Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4 cations. Clay Minerals, 38, 201211.CrossRefGoogle Scholar
Specht, C.H. & Frimmel, F.H. (2001) An in situ ATRFTIR study on the adsorption of dicarboxylic acids onto kaolinite in aqueous suspensions. Physical Chemistry, Chemical Physics, 3, 54445449.CrossRefGoogle Scholar
Yariv, S. (1996) Thermo-IR-spectroscopy analysis of the interactions between organic pollutants and clay minerals. Thermochimica Acta, 274, 135.CrossRefGoogle Scholar
Yariv, S. & Lapides, I. (2005) The use of thermo-XRDanalysis in the study of organo-smectite complexes. Journal of Thermal Analysis and Calorimetry, 80, 1126.CrossRefGoogle Scholar
Yariv, S. & Shoval, S. (1982) The effects of thermal treatments on associations between fatty acids and montmorillonite. Israel Journal of Chemistry, 22, 259265.CrossRefGoogle Scholar
Yariv, S., Russell, J.D. & Farmer, V.C. (1966) Infrared study of the adsorption of benzoic acid and nitrobenzene in montmorillonite. Israel Journal of Chemistry, 4, 201213.CrossRefGoogle Scholar
Yoon, T.H., Johnson, S.B., Musgrave, C.B. & Brown, G.E. Jr (2004) Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces. Geochimica et Cosmochimica Acta, 68, 45054518.CrossRefGoogle Scholar