Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T19:55:51.000Z Has data issue: false hasContentIssue false

Interactions between hydroxy-aluminium species and homoionic Na- and Ca-montmorillonite particles, as manifested by ζ potential, suspension stability and X-ray diffraction

Published online by Cambridge University Press:  09 July 2018

J. Y. Bottero
Affiliation:
Centre de Recherche sur la Valorisation des Minerais (ENSG)—U.A. 235 (CNRS), B.P. 40, 54501 Vandoeuvre Cédex, France
M. Bruant
Affiliation:
Centre de Recherche sur la Valorisation des Minerais (ENSG)—U.A. 235 (CNRS), B.P. 40, 54501 Vandoeuvre Cédex, France
J. M. Cases
Affiliation:
Centre de Recherche sur la Valorisation des Minerais (ENSG)—U.A. 235 (CNRS), B.P. 40, 54501 Vandoeuvre Cédex, France

Abstract

The interactions between and higher molecular weight hydroxy-Al species with homoionic Na- and Ca-montmorillonite have been studied by measuring adsorption of the hydroxy-Al on to the clay, turbidity of the resulting suspensions, electrokinetic potential, and d(001) basal spacing. The isolated “Al13” ions are adsorbed according to a cation-exchange process which causes flocculation of the tactoids at low concentrations. At higher concentrations, the adsorption of either isolated “Al13” or/and higher molecular weight species is mainly responsible for the dispersion of clay particles with a net positive surface charge (ζ ∼ + 50 mV). Consequently, the tactoids are destroyed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akitt, J.W., Greenwood, W.N. & Khandelwal, B.L. (1972) 27Al nuclear magnetic resonance studies of the hydrolysis and polymerisation of the hexa-aquo-aluminum (III) cation. J. Chem. Soc. 7, 604–612.Google Scholar
Akitt, J.W., & Farthing, A. (1978) New 27A1NMR studies of the hydrolysis of aluminum (III) cation. J, Mag. Res. 32, 345–350,Google Scholar
Allen, T. (1974) Particle Size Measurements. (Chapman & Hall editors). Powder Technology Series.Google Scholar
Axelos, M. A. V. (1984) Etude par diffusion des rayons X aux petits angles du mecanisme de coagulation-floculation d'une silice colloidale en presence dfune solution de chlorure d'aluminium partiellement neutralisee. These de 3eme cycle, Orleans, France.Google Scholar
Axelos Tchoubar, D., Bottero, J.Y. & Fiessinger, F. (1985) Determination de la D.P.A.C. de la structure fractale d'agregats obtenus par collage d'amas. Etude de deux solutions d'hydroxyde d'aluminium (Al(OH)x avec x = 2,5 et 3. J. Phys. 46, 1587–1593.Google Scholar
Axelos, M.A.V., Tchoubar, D. & Jullien, R. (1986) X-ray scattering functions of fractal structures: confrontation between simulations and experiments. J. Phys. (in press).Google Scholar
Bottéro, J.Y., Cases, J.M., Poirier, J.E. & Fiessinger, F. (1980) Studies of hydrolyzed aluminum chloride solutions. 1. Nature of aluminum species and composition of aqueous solutions. J. Phys. Chem. 84, 29332939.CrossRefGoogle Scholar
Bottéro, J.Y., Tchoubar, D., Cases, J.M. & Fiessinger, F. (1982a) Investigation of the hydrolysis of aqueous solutions of aluminum chloride. 2. Nature and structure by small-angle X-ray scattering. J. Phys. Chem. 86, 3667–3673.Google Scholar
Bottéro, J.Y., Marchal, J.P., Cases, J.M., Poirier, J.E. & Fiessinger, F. (1982b) Etude de solutions diluees de chlorure d'luminium partiellement neutralisee par RMN de TAluminium-27. Bull. Soc. Chim. France I.42-I.43.Google Scholar
Bottéro, J.Y., Axelos, M.A.V., Tchoubar, D., Cases, J.M., Fripiat, J.J. & Fiessinger, F. (1987) Mechanism of formation of aluminium trihydroxide from Keggin Al13 polymers. J. Coll. Int. Sci. 117, 47–57.Google Scholar
Cases, J.M. & Francois, M. (1982) Etude des propri6t6s thermodynamiques de l’eau au voisinage des interfaces. Agronomie 10, 931–938.Google Scholar
Cases, J.M. (1985) CNRS internal report.Google Scholar
Fripiat, J .J., Cases, J.M., Francois, M. & Letellier, M. (1982) Thermodynamic and microdynamic behavior of water in clay suspensions and gels. J. Coll. Int. Sci. 89, 378–400.CrossRefGoogle Scholar
Harkins, W. D. (1952) The Physical Chemistry of Surface Films. Reinhold, New York.Google Scholar
Johansson, G., Lundgren, G. & Sillen, L.G. (1960) On the crystal structure of a basic aluminium sulfate and the corresponding selenate. Acta Chem. Scand. 14, 771–773.Google Scholar
Lahav, N., Shani, U. & Shabtai, J. (1978) Synthesis and properties of hydroxy-aluminum-montmorillonite. Clays Clay Miner. 26, 107–115.CrossRefGoogle Scholar
Lahav, N. & Shani, U. (1978) Cross linked smectites. II. Flocculation and microfabric characteristics of hydroxy-aluminum-montmoriUonite. Clays Clay Miner. 26, 116–124.Google Scholar
Oades, J.M. (1984) Interactions of polycations of aluminum and iron with clays. Clays Clay Miner. 32,49-57.Google Scholar
Occelli, M.L. & Tindwa, R.M. (1983) Physicochemical properties of montmorillonite interlayered with cationic oxy-aluminum pillars. Clays Clay Miner. 31, 22–28.Google Scholar
Pinnavaia, T.J., Rainey, V. Ming-Shing, Tzon & White, J.M. (1984) Characterisation of pillared clays by neutron scattering. J. Mol. Cat. 27, 213–224.Google Scholar
Plee, D., Borg, F., Gatineau, L. & Fripiat, J.J. (1985) High-resolution solid-state 27A1 and 29Si nuclear magnetic resonance study of pillared clays. J. Am. Chem. Soc. 107, 2362–2369.Google Scholar
Rengasamy, P. & Oades, J.M. (1978) Interactions of monomeric and polymeric species of metal ions with clay surfaces. III. Aluminum (III) and chromium (III). Aust. J. Soil Res. 16, 53–66.Google Scholar