Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T19:28:27.042Z Has data issue: false hasContentIssue false

Infrared and Mössbauer spectroscopy of Fe-rich smectites from Morrón de Mateo bentonite deposit (Spain)

Published online by Cambridge University Press:  21 February 2018

M. Pelayo*
Affiliation:
Department of Environment, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
J. F. Marco
Affiliation:
Institute of Physical Chemistry Rocasolano, CSIC, Calle Serrano 119, 28006 Madrid, Spain
A. M. Fernández
Affiliation:
Department of Environment, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
L. Vergara
Affiliation:
Institute of Physical Chemistry Rocasolano, CSIC, Calle Serrano 119, 28006 Madrid, Spain
A. M. Melón
Affiliation:
Department of Environment, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
L. Pérez del Villar
Affiliation:
Department of Environment, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
*

Abstract

The Morrón de Mateo bentonite deposit has been studied as a natural analogue of the thermal effect on the bentonite barrier of a geological radioactive waste repository. This deposit was intruded by a volcanic dome that induced hydrothermal activity affecting the smectite clay minerals close to the dome. Previous studies of proximal bentonites indicated that Al-montmorillonites were transformed into Fe-rich smectites with intermediate composition between beidellite and saponite through gradual steps formed by smectites increasingly rich in Mg and Fe. In order to confirm the suggested transformation and the Fe distribution into the smectites, infrared and Mössbauer spectroscopy studies were performed. Infrared spectra of samples away from the dome show typical bands for montmorillonite type with prevailing Al in octahedral positions, while proximal samples also show bands of Fe-rich smectites. Mössbauer data confirm that Fe present in the fine fraction of bentonites is fundamentally located in the smectites structure, mainly as octahedrally coordinated Fe(III). Proximal smectites have a considerably more distorted octahedral environment for Fe(III) which probably stemmed from a significant degree of substitution of Al by Fe(III). These results confirm that an alteration process occurred related to the volcanic intrusion which produced an increase in temperature and Fe-rich solutions responsible for the transformation of Al-montmorillonites.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juan Cornejo

References

REFERENCES

Bancroft, G.M. (1973) Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists. McGraw Hill, Maidenhead, Berkshire, England.Google Scholar
Beaufort, D. & Meunier, A. (1994) Saponite, corrensite and chlorite/saponite mixed-layered minerals and saponite in the Sancerre-Couy deep drill hole (France). Clay Minerals, 29, 4761.CrossRefGoogle Scholar
Bergaya, F., Brigatti, M.F. & Fripiat, J.J. (1985) Contribution of infrared spectroscopy to the study of corrensite. Clays and Clay Minerals, 33, 458462.Google Scholar
Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U. & Scheinost, A. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June 1997, Ottawa, 413–419.Google Scholar
Bishop, J.L., Madejová, J., Komadel, P. & Froeschl, H. (2002) The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37, 607616.CrossRefGoogle Scholar
Brigatti, M.F. (1983) Relationship between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177186.Google Scholar
Caballero, E., Reyes, E., Yusta, A., Huertas, F. & Linares, J. (1985) Las bentonitas de la zona sur de Cabo de Gata, Almería. Geoquímica y mineralogía. Acta Geológica Hispánica, 20, 267287.Google Scholar
Cardile, C.M. & Johnston, J.H. (1986) A 57Fe Mössbauer spectroscopic study of montmorillonites: A new interpretation. Clays and Clay Minerals, 34, 307313.Google Scholar
Coey, J. M. D. (1980) Clay minerals and their transformations studied with nuclear techniques: The contribution of Mössbauer spectroscopy. Atomic Energy Review, 18, 73124.Google Scholar
Cuadros, J., Dekov, V.M. & Fiore, S. (2008) Crystal-chemistry of the mixed-layer sequence talc-talc-smectite-smectite from submarine hydrothermal vents. American Mineralogist, 93, 13381348.Google Scholar
Dainyak, L.G. & Drits, V.A. (1987) Interpretation of Mössbauer spectra of nontronite, celadonite and glauconite. Clays and Clay Minerals, 35, 363373.CrossRefGoogle Scholar
Dainyak, L.G., Drits, V.A. & Heifits, L.M. (1992) Computer simulation of cation distribution in dioctahedral 2:1 layer silicates using IR-data: Application to Mössbauer spectroscopy of a glauconite sample. Clays and Clay Minerals 40, 470479.CrossRefGoogle Scholar
De Grave, E., Vandenbruwaene, J. & Elewaut, E. (1985) An57Fe Mössbauer effect study on glauconites from different locations in Belgium and northern France. Clay Minerals, 20, 171179.CrossRefGoogle Scholar
Delgado, A. (1993) Estudio isotópico de los procesos diagenéticos e hidrotermales relacionados con la génesis de bentonitas (Cabo de Gata, Almería). PhD thesis, University of Granada, Spain, 413 pp.Google Scholar
Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A. & Sklute, E.C. (2006) Mössbauer spectroscopy of earth and planetary materials. Annual Review of Earth and Planetary Sciences, 34, 83125.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4. Mineralogical Society, London, 539 pp.Google Scholar
Farmer, V.C. (1998) Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Minerals, 33, 601604.Google Scholar
Fernández-Soler, J.M. (1992) El volcanismo calco-alcalino de Cabo de Gata (Almería). PhD thesis, University of Granada, Spain, 243 pp.Google Scholar
Fernández-Soler, J.M. (2002) Thermal effect: Morrón de Mateo outcrop. Geological setting Memoir. Barra II Project Report, 41pp.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 5359.Google Scholar
Goodman, B.A. (1994) Mössbauer spectroscopy. Pp. 68119 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F. & Michau, N. (2004) Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides. Clay Minerals, 39, 1734.CrossRefGoogle Scholar
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Physics and Chemistry of Minerals, 7, 223238.Google Scholar
Komadel, P., Madejová, J. & Stucki, J.W. (1999) Partial stabilization of Fe (II) in reduced ferruginous smectite by Li fixation. Clays and Clay Minerals, 47, 458465.CrossRefGoogle Scholar
Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M. & Plançon, A. (2005) Clays and Clay Minerals, 53, 597612.CrossRefGoogle Scholar
Maddock, A.G. (1985) Mössbauer spectrometry in mineral chemistry. Pp. 141208 in: Chemical Bonding and Spectroscopy in Mineral Chemistry (Berry, F.J. & Vaughan, D.J., editors). Springer, Netherlands.CrossRefGoogle Scholar
Madejová, J., Komadel, P. & Číčel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.CrossRefGoogle Scholar
Madejová, J., Bujdák, J., Petit, S. & Komadel, P. (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites: (I) Mid-infrared region. Clay Minerals, 35, 739751.Google Scholar
Madejová, J. & Komadel, P. (2001) Baseline studies of The Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 378 pp.Google Scholar
Murad, E. (1988) Properties and behavior of iron oxides as determined by Mössbauer spectroscopy. Pp 309350 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Springer, Berlin.Google Scholar
Murad, E. (2010) Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Minerals, 45, 413430.Google Scholar
Parra, M., Delmont, P., Ferragne, A., Latouche, C., Pons, J.C. & Puechmaille, C. (1985) Origin and evolution of smectites in recent marine sediments of the NE Atlantic. Clay Minerals, 20, 335346.Google Scholar
Pelayo, M., García-Romero, E., Labajo, M.A. & Pérez del Villar, L. (2011) Occurrence of Fe-Mg-rich smectites and corrensite in the Morrón de Mateo bentonite deposit (Cabo de Gata region, Spain): a natural analogue of the bentonite barrier in a radwaste repository. Applied Geochemistry, 26, 11531168.CrossRefGoogle Scholar
Pelayo, M. (2014) Estudio del yacimiento de bentonita de Morrón de Mateo como análogo natural del comportamiento de la barrera de arcilla de un almacenamiento de residuos radiactivos. PhD thesis, Complutense University of Madrid, Spain, 311 pp.Google Scholar
Pelayo, M., García-Romero, E., Labajo, M.A. & Pérez del Villar, L. (2016) Evidence of montmorillonite/Fe-rich smectite transformation in the Morrónde Mateo bentonite deposit (Spain): implications for the clayey barrier behaviour. Applied Clay Science, 131, 5970.Google Scholar
Pérez del Villar, L., Delgado, A., Reyes, E., Pelayo, M., Fernández-Soler, J.M., Cózar, J.S., Tsige, M. & Quejido, A.J. (2005) Thermochemically induced transformations in Al-smectites: a Spanish natural analogue of the bentonite barrier behaviour in a radwaste disposal. Applied Geochemistry, 20, 22522282.CrossRefGoogle Scholar
Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F. & Köster, H.M. (2002) Characterization and crystal chemistry of a Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37, 283297.CrossRefGoogle Scholar
Reyes, E. (1977) Mineralogía y geoquímica de las bentonitas de la zona norte de Cabo de Gata (Almería). PhD thesis, University of Granada, Spain. 650 pp.Google Scholar
Rozalén, M. (2004) Mecanismo y velocidad de disolución de montmorillonita en soluciones de electrolitos inertes. Influencia del pH y de la temperatura. PhD thesis, University of Granada, Spain. 299 pp.Google Scholar
Russell, J. & Fraser, A. (1994) Infrared methods. Pp. 1167 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.Google Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Mixtures. Elsevier, Amsterdam, 396 pp.Google Scholar
Vantelon, D., Pelletier, M., Michot, L.J., Barres, O. & Thomas, F. (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Minerals, 36, 369379.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 16491661.Google Scholar
Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D. & Shibata, M. (2006) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, 70, 323326.Google Scholar
Zviagina, B.B., McCarty, D.K., Środon, J. & Drits, V.A. (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52, 399410.Google Scholar