Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T17:49:43.401Z Has data issue: false hasContentIssue false

Influence of the calcination temperature of kaolin on the mechanical properties of mortars and concretes containing metakaolin

Published online by Cambridge University Press:  09 July 2018

R. Mejía De Gutiérrez
Affiliation:
Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia
J. Torres
Affiliation:
Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia
C. Vizcayno*
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Madrid, Spain
R. Castello
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Madrid, Spain
*

Abstract

The effect of heating, to temperatures between 400 and 1200ºC, on the dehydroxylation of kaolin and the pozzolanic activity of the resulting amorphous material were determined by a variety of analytical techniques. Mixtures of concrete containing variable amounts of kaolin calcined at 700ºC were analysed and the results compared with those for concrete samples containing two different types of imported metakaolin. As shown in this work, Colombian kaolin can be used effectively as a raw material to obtain a highly active product (metakaolin). The optimum heating temperature for the kaolin is between 700 and 800ºC.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balogh, A. (1995) High reactivity metakaolin. Concrete Construction, 40, 13.Google Scholar
Batis, G., Pantazopoulou, P., Tsivilis, S. & Badogiannis, E. (2005) The effect of metakaolin on the corrosion behaviour of cement mortars. Cement and Concrete Composites, 27, 125130.Google Scholar
Bhatti, J.I. (1991) A review of the application of thermal analysis to cement-admixture systems. Thermochimica Acta, 189, 313350.Google Scholar
Cabrera, J. & Frías, M. (2001) Mechanism of hydration of the metakaolin-lime-water system. Cement and Concrete Research, 31, 177182.Google Scholar
Caldarone, A., Gruber, K.A. & Burg, R. (1994) Highreactivity metakaolin: a new generation mineral mixture. Concrete International, 37-41.Google Scholar
Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. & Degeimbre, R. (2003) Durability of mortars modified with metakaolin. Cement and Concrete Research, 33, 14731479.Google Scholar
Frías, M. & Cabrera, J. (2000) Pore size distribution and degree of hydration of metakaolin-cement pastes. Cement and Concrete Research, 30, 561569.CrossRefGoogle Scholar
Frías, M. & Sánchez de Rojas, M.I. (2003) The effect of high curing temperature on the reaction kinetics in MK/lime and MK-blended cement matrices at 60°C. Cement and Concrete Research, 33, 643649.Google Scholar
Gardolinski, J.E.F.C. & Lagaly, G. (2005) Grafted organic derivatives of kaolinite: I. Synthesis, chemical and rheological characterization. Clay Minerals, 40, 537546.Google Scholar
Gruber, K.A., Ramlochan, T., Boddy, A., Hooton, R.D. & Thomas, M.D.A. (2001) Increasing concrete durability with high-reactivity metakaolin. Cement and Concrete Composites, 23, 479484.Google Scholar
Kakali, G., Perraki, T., Tsivilis, S. & Badogiannis, E. (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 7380.Google Scholar
Kristof, E., Juhasz, A.Z. & Vassanyi, I. (1993) The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite. Clays and Clay Minerals, 41, 608612.Google Scholar
Malopesky, J. & Pytel, Z. (2000) Effect of metakaolinite on strength and chemical resistance of cement mortars. Pp. 189204 in: Proceedings of the 5th International Conference of Durability of Concrete, Barcelona, Spain (Malhotra, V.M., editor).Google Scholar
Mejía de Gutiérrez, R., Delvasto, S. & Talero, R. (2000) Una nueva puzolana para materiales cementicios de elevadas prestaciones. Materiales de Construcción, 260, 514.Google Scholar
Mejía de Gutiérrez, R., Torres, J. & Guerrero, C.E. (2004) Análisis del proceso térmico de producción de una puzolana. Materiales de Construccion 7, 24, 6572.Google Scholar
Moya, J.S. (1998) Últimos avances sobre el tratamiento térmico del caolín: formacion o no de puzolanas artificiales puzolanas naturales, cenizas volantes y similares en la construccion. Cemento Hormigón, 71-75.Google Scholar
Poon, C., Azhar, S., Anson, M. & Wong, Y. (2003) Performance of metakaolin concrete at elevated temperatures. Cement and Concrete Composites, 25, 8389.CrossRefGoogle Scholar
Qian, X. & Li, Z. (2001) The relationships between stress and strain for high-performance concrete with metakaolin. Cement and Concrete Research, 31, 16071611.Google Scholar
Rahier, H., Wullaert, B. & van Mele, B. (2000) Influence of the degree of dehydroxilation of kaolinite on the properties of aluminosilicate glasses. Journal of Thermal Analysis and Calorimetry, 62, 417427.Google Scholar
Ramlochan, T. & Thomas, M. (2000) Effect of metakaolin on external sulfate attack. Pp. 239251in: Proceedings of the 5th International Conference of Durability of Concrete, Barcelona, Spain (Malhotra, V.M., editor).Google Scholar
Ramlochan, T., Thomas, M. & Gruber, K.A. (2000) The effect of metakaolin on alkali-silica reaction in concrete. Cement and Concrete Research, 30, 339344.CrossRefGoogle Scholar
Razak, H.A. & Wong, H.S. (2005) Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cement and Concrete Research, 35, 688695.Google Scholar
Sabir, B.B., Wild, S. & Bai, J. (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites, 23, 441454.Google Scholar
Sanz, J., Madani, A. & Serratosa, J.M. (1988) Aluminum 27 and Silicon 29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation. Communications of the American Ceramic Society, C71, 418421.Google Scholar
Shvarzman, A., Kovler, K., Grader, G.S. & Shteret, G.E. (2003) The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33, 405416.Google Scholar
Van der Marel, H.W. & Beutelspacher, S. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier.Google Scholar
Vu, D.D., Stroeven, P. & Bui, V.B. (2001) Strength and durability aspects of calcined kaolin-blended portland cement mortar and concrete. Cement and Concrete Composites, 23, 471478.Google Scholar
Wilson, M.J. (1994) Clay Mineralogy: Spectroscopic and Chemical Methods. Chapman & Hall, London.Google Scholar