Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T13:49:37.193Z Has data issue: false hasContentIssue false

Incorporation of Al in iron oxyhydroxides: implications for the structure of ferrihydrite

Published online by Cambridge University Press:  09 July 2018

A. Manceau*
Affiliation:
ISTerre, CNRS and Université de Grenoble 1, F-38041 Grenoble Cedex 9, France
W.P. Gates
Affiliation:
Department of Civil Engineering, Monash University, Melbourne 3800, Australia
*

Abstract

The incomplete miscibility of Al into the ferrihydrite structure has been a recurring issue in understanding the environmental geochemistry of this important oxyhydroxide. During co-precipitation from acidic aqueous solution, ferrihydrite has been observed to accept only up to ∼25 at.% Al without the formation of multi-phasic Al and Fe oxyhydroxides. Using basic chemistry and crystal-chemical relationships we propose here that the saturation limit of Al substitution in the structure of Fe oxyhydroxides is controlled by Al – Al avoidance in a manner that conforms to Pauling's distortion rule. Employing this hypothesis, we show that the predicted miscibility limit for Al incorporation is 25 at.% in ferrihydrite and 33 at.% in goethite, in agreement with previous observations. These results indicate that the classical f-phase model for ferrihydrite best represents observations. Incorrect assignment of Fe site occupancy and other shortcomings of the akdalaite/tohdite model for ferrihydrite are also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baes, C.F. Jr & Mesmer, R.E. (1976) The Hydrolysis of Cations. Wiley, New York.Google Scholar
Berquo, T.S., Banerjee, S.K., Ford, R.G., Penn, R.L. & Pichler, T. (2007) High crystallinity Si-ferrihydrite: An insight into its Néel temperature and size dependence of magnetic properties. Journal of Geophysical Research: Solid Earth, 112.B2, 02102.Google Scholar
Billinge, S.J.L. & Kanatzidis, M.G. (2004) Beyond crystallography: The study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chemical Communications, 7, 749–760.Google Scholar
Billinge, S.J.L., McKimmy, E.J., Shatnawi, M., Kim, H.J., Petkov, V., Wermeille, D. & Pinnavaia, T.J. (2005) Mercury binding sites in thiol-functionalized mesostructured silica. Journal of the American Chemical Society, 127, 8492–8498.CrossRefGoogle ScholarPubMed
Bottero, J.Y., Manceau, A., Villieras, F. & Tchoubar, D. (1994) Structure and mechanisms of formation of FeOOH(Cl) polymers. Langmuir, 10, 316–319.CrossRefGoogle Scholar
Bradley, S.M. & Kydd, R.A. (1993) Comparison of the species formed upon base hydrolyzes of gallium(III) and iron(III) aqueous solutions: The possibility of existence of an [FeO4Fe12(OH)24(H2O)12]7+ polyoxocation. Journal of the Chemical Society, Dalton Transactions, 15, 2407–2413.Google Scholar
Casey, W.H., Rustad, J.R. & Spiccia, L. (2009) Minerals as molecules - Use of aqueous oxide and hydroxide clusters to understand geochemical reaction. Chemistry: A European Journal, 15, 4496–4515.Google Scholar
Cismasu, A.C., Michel, F.M., Stebbins, J.F., Levard, C. & Brown, G.E. Jr (2012) Properties of impurity-bearing ferrihydrite I. Effects of Al content and precipitation rate on the structure of 2-line ferrihydrite. Geochimica et Cosmochimica Acta, 92, 275–291.CrossRefGoogle Scholar
Combes, J.M., Manceau, A., Calas, G. & Bottero, J.Y. (1989) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy: 1. Hydrolysis and formation of ferric gels. Geochimica et Cosmochimica Acta, 53, 583–594.CrossRefGoogle Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray diffraction by disordered lamellar structures: Theory and applications to microdivided silicates and carbons. 371 pp. Springer Verlag, Berlin.CrossRefGoogle Scholar
Drits, V.A., Sakharov, B.A., Salyn, A.L. & Manceau, A. (1993) Structural model for ferrihydrite. Clay Minerals, 28, 185–208.CrossRefGoogle Scholar
Fernandez-Martinez, A., Timon, V., Roman-Ross, G., Cuello, G.J., Daniels, J.E. & Ayora, C. (2010) The structure of schwertmannite, as nanocrystalline iron oxyhydroxidesulfate. American Mineralogist, 95, 1312–1322.CrossRefGoogle Scholar
Fischer, H.E., Barnes, A.C. & Salmon, P.S. (2006) Neutron and x-ray diffraction studies of liquids and glasses. Reports on Progress in Physics, 69, 233–299.CrossRefGoogle Scholar
Gates, W.P., Slade, P.G., Manceau, A. & Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.CrossRefGoogle Scholar
Gualtieri, A.F. & Venturelli, P. (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. American Mineralogist, 84, 895–904.CrossRefGoogle Scholar
Güven, N. (1988) Smectites. Pp. 497–559 in: Hydrous Phyllosilicates (Exclusive of Micas), (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America.Google Scholar
Harrington, R., Hasuner, D.B., Xu, W., Bhandari, N., Michel, F.M. Brown, G.E. Jr, Strongin, D.R. & Parise, J.B. (2011) Neutron pair distribution function study of two-line ferrihydrite. Environmental Science and Technology, 45, 9883–9890.CrossRefGoogle ScholarPubMed
Henry, M., Jolivet, J.P. & Livage, J. (1992) Aqueous chemistry of metal-cations-hydrolysis, condensation and complexation. Structure and Bonding, 77, 153–206.Google Scholar
Hiemstra, T. & Van Riemsdijk, W.H. (2009) A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density. Geochimica et Cosmochimica Acta, 73, 4423–4436.CrossRefGoogle Scholar
Hocking, R.K, Gates, W.P. & Cashion, J.D. (2012) Comments on the ‘Direct observation of tetrahedrally coordinated Fe(III) in ferrihydrite’. Environmental Science and Technology, 46, 11471–11472.CrossRefGoogle ScholarPubMed
Janney, D.E., Cowley, J.M. & Buseck, P.R. (2000) Structure of synthetic 2-line ferrihydrite by electron nanodiffraction. American Mineralogist, 85, 1180–1187.CrossRefGoogle Scholar
Janney, D.E., Cowley, J.M. & Busech, P.R. (2001) Structure of synthetic 6-line ferrihydrite by electron nanodiffraction. American Mineralogist, 86, 327–335.CrossRefGoogle Scholar
Jolivet, J.P., Henry, M. & Livage, J. (2000) Metal Oxide Chemistry and Synthesis: From Solution to Solid State. John Wiley & Sons Inc: New York.Google Scholar
Klein, C. & Philpotts, T. (2012) Earth Materials: Introduction to Mineralogy and Petrology. Cambridge University Press.CrossRefGoogle Scholar
Lowenstein, W. (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92–96.Google Scholar
Magini, M., Licheri, G., Paschina, G., Piccaluga, G. & Pinna, G. (1988) X-ray Diffraction of Ions in Aqueous Solutions: Hydration and Complex Formation. 267 pp. CRC Press Inc., Boca Raton.Google Scholar
Maillot, F., Morin, G., Wang, Y., Bonnin, D., Ildefonse, P., Chaneac, C. & Calas, G. (2011) New insight into the structure of nanocrystalline ferrihydrite: EXAFS evidence for tetrahedrally coordinated iron(III). Geochimica et Cosmochimica Acta, 75, 2708–2720.CrossRefGoogle Scholar
Majzlan, J. & Navrotsky, A. (2003) Thermodynamics of the goethite-diaspore solid solution. European Journal of Mineralogy, 15, 495–50.CrossRefGoogle Scholar
Manceau, A. (2009) Evaluation of the structural model for ferrihydrite derived from real-space modelling of high-energy X-ray diffraction data. Clay Minerals, 44, 19–34.CrossRefGoogle Scholar
Manceau, A. (2010) PDF analysis of ferrihydrite and the violation of Pauling's Principia. Clay Minerals, 45, 225–228.CrossRefGoogle Scholar
Manceau, A. (2011) Critical evaluation of the revised akdalaite model for ferrihydrite. American Mineralogist, 96, 521–533.CrossRefGoogle Scholar
Manceau, A. (2012a) Comment on ‘Direct observation of tetrahedral coordinated Fe(III) in ferrihydrite. Environmental Science and Technology, 46, 6882–6884.CrossRefGoogle ScholarPubMed
Manceau, A. (2012b) Critical evaluation of the revised akdalaite model for ferrhydrite – Reply. American Mineralogist, 97, 255–256.CrossRefGoogle Scholar
Manceau, A. & Gates, W.P. (1997) Surface structural model for ferrihydrite. Clays and Clay Minerals, 45, 448–460.CrossRefGoogle Scholar
Manceau, A., Lanson, B., Drits, V. A., Chateigner, D., Gates, W. P., Wu, J., Huo, D. & Stucki, J. W (2000) Oxidation reduction mechanism of iron in dioctahedral smectites: 1. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133–152.Google Scholar
Manceau, A., Marcus, M.A., Grangeon, S., Lanson, M., Lanson, B., Gaillot, A.C., Skanthakumar, S. & Soderholm, L. (2013) Short-range and long-range order of phyllomanganate nanoparticles determined using high energy X-ray scattering. Journal of Applied Crystallography, 46, 193–209.CrossRefGoogle Scholar
Mazzetti, L. & Thistlethwaite, P.J. (2002) Raman spectra and thermal transformations of ferrihydrite and schwertmannite. Journal of Raman Spectroscopy, 33, 104–111.CrossRefGoogle Scholar
Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. & Parise, J.B. (2007) The structure of ferrihydrite, a nanocrystalline material. Science, 316, 1726–1729.CrossRefGoogle ScholarPubMed
Michel, F.M., Barron, V., Torrent, J., Morales, A.P., Serna, C. J., Boily, J.-F., Liu, Q., Ambrosini, A., Cismasu, A.C. & Brown, G.E. (2010) Ordered ferrimagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proceedings of the National Academy of Sciences of the United States of America, 107, 2787–2792.Google ScholarPubMed
Navrotsky, A. (2004) Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 101, 12096–12101.Google ScholarPubMed
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1–128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Mineralogical Society, London.Google Scholar
Paktunc, D., Manceau, A. & Dutrizac, J. (2013) Incorporation of Ge in ferrihydrite: Implications for the structure of ferrihydrite. American Mineralogist, 98, 859–869.CrossRefGoogle Scholar
L., Pauling (1929) The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, 51, 1010–1026.Google Scholar
Petkov, V., Ren, Y., Saratovsky, I., Pasten, P., Gurr, S.J., Hayward, M.A., Poeppelmeier, K.R. & Gaillard, J.F. (2009) Atomic-scale structure of biogenic materials by total X-ray diffraction: A study of bacterial and fungal MnOx. ACS Nano, 3, 441–445.CrossRefGoogle ScholarPubMed
Pinney, N., Kubicki, J.D., Middlemiss, D.S., Grey, C.P. & Morgan, D. (2009) Density functional theory study of ferrihydrite and related Fe-oxyhydroxides. Chemistry of Materials, 21, 5727–5742.CrossRefGoogle Scholar
Rancourt, D.G. & Meunier, J.F. (2008) Constraints on structural models of ferrihydrite as a nanocrystalline material. American Mineralogist, 93, 1412–1417.CrossRefGoogle Scholar
Schulze, D.G. & Schwertmann, U. (1984) The influence of aluminium on iron oxides: X. Properties of Alsubstituted goethites. Clay Minerals, 19, 521–539.CrossRefGoogle Scholar
Schwertmann, U., Fitzpatrick, R.W., Taylor, R.M. & Lewis, D.G. (1979) The influence of aluminum on iron oxides. II. Preparation and properties of Alsubstituted hematites. Clays and Clay Minerals, 27, 105–112.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar
Sideris, P.J., Blanc, F., Gan, Z. & Grey, C.P. (2012) Identification of cation clustering in Mg-Al layered double hydroxides using multinuclear solid state nuclear magnetic resonance spectroscopy. Chemistry of Materials, 24, 2449–2463.CrossRefGoogle Scholar
Stanjek, H. & Weidler, P.G. (1992) The effect of dry heating on the chemistry, surface area, and oxalate solubility of synthetic 2-line and 6-line ferrihydrites. Clay Minerals, 27, 397–412.CrossRefGoogle Scholar
Towe, K & Bradley, W.F. (1967) Mineralogical constitution of colloidal “hydrous ferric oxides” Journal of Colloids and Interface Science, 24, 384–392.CrossRefGoogle Scholar
Vilge-Ritter, A., Rose, J., Masion, A., Botteri, J.Y. & Laine, J.M. (1999) Chemistry and structure of aggregates formed with Fe-salts and natural organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 147, 297–308.CrossRefGoogle Scholar
Waseda, Y. (1980) The Structure of Non-crystalline Materials. 326 pp. McGraw-Hill Inc., New York.Google Scholar
Wolska, E. & Schwertmann, U. (1989) Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift für Kristallographie, 189, 69–75.Google Scholar
Xu, W., Hausner, D.B., Harrington, R., Lee, P.L., Strongin, D.R. & Parise, J.B. (2011) Structural water in ferrhydrite and constraints this provides on possible structure models. American Mineralogist, 96, 513–520.CrossRefGoogle Scholar
Yatsenko, D.A., Pakharukova, V.P., Tsybulya, S.V., Matvienko, A.A. & Sidel’nikov, A.A. (2012) Phase composition and structure of nanocrystalline products of solid-phase oxidative thermolysis of iron oxalate dehydrate. Journal of Structural Chemistry, 53, 548–556.CrossRefGoogle Scholar
Zhang, F.Q., Guan, W., Zhang, Y.T., Xu, M. T., Li, J. & Su, Z.M. (2010) On the origin of the inverted stability order of reverse-Keggin [(MnO4)(CH3)12Sb12O24]6- : A DFT study of α, β, γ, δ and ε isomers. Inorganic Chemistry, 49, 5472–5481.Google ScholarPubMed