Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T04:23:40.157Z Has data issue: false hasContentIssue false

Identification and use of white clayey deposits from the area of Tamra (northern Tunisia) as ceramic raw materials

Published online by Cambridge University Press:  09 July 2018

B. Moussi
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM, BP 273, 8020 Soliman, Tunisia
M. Medhioub
Affiliation:
Faculté des Sciences de Sfax, Département des Sciences de la Terre, 3018 Sfax, Tunisia
N. Hatira
Affiliation:
Faculté des Sciences de Gabes, Département des Sciences de la Terre, Cité Erriadh 6072 Zrig, Gabes, Tunisia
J. Yans
Affiliation:
FUNDP - Institution - Rue de Bruxelles 61, B-5000 Namur, Belgium
W. Hajjaji
Affiliation:
Ceramics and Glass Engineering Dept & CICECO. University of Aveiro, 3810-193 Aveiro, Portugal
F. Rocha
Affiliation:
Geobiotec, Geosciences Dept, University of Aveiro, 3810-193 Aveiro, Portugal
J. A. Labrincha*
Affiliation:
Ceramics and Glass Engineering Dept & CICECO. University of Aveiro, 3810-193 Aveiro, Portugal
F. Jamoussi
Affiliation:
Laboratoire de Valorisation des Matériaux Utiles, CNRSM, BP 273, 8020 Soliman, Tunisia
*

Abstract

White clayey geomaterials were collected from northeast of the Nefza region (northern Tunisia). These deposits belong to the Mio-Pliocene molassic basins (basin of Tamra-Sidi Dris, Boukhchiba) and Oligocene Numidien in the area of El Aouinet. Analysis by X-ray diffraction showed associations of halloysite and kaolinite (Tamra), kaolinite and illite (Aouinet zone) and mixed layers, kaolinite and feldspars (Boukhchiba zone). Semi-industrial processed bricks showed promising characteristics and were visibly free of defects. Ceramic tiles had a bending strength that met the required standards but water absorption was somewhat high. So, to achieve higher quality, optimisation needs to be carried out in the formulation of batches or in the processing conditions. Finally, the incorporation in whitish sanitary-ware glaze formulations generated smooth coating layers that showed the required strong brightness and were free of defects.

Type
Research Papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidi, R. (2010) Mineralogy and fluid inclusion study of the carbonate-hosted Mississippi valley-type Ain Allega Pb-Zn-Sr-Ba ore deposit, Northern Tunisia. Journal of African Earth Sciences, 57, 262272.CrossRefGoogle Scholar
Aras, A. (2004) The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Applied Clay Science, 24, 257269.CrossRefGoogle Scholar
Arib, A., Sarhiri, A., Moussa, R., Remmal, T. & Moussa, G. (2007) Caractéristiques structurales et mécaniques de céramiques base d’argiles : influence de la source de feldspath. Comptes Rendus Chimie, 10, 502510.CrossRefGoogle Scholar
Bouaziz, S., Barrier, E., Soussi, M., Turki, M.M. & Zouari, H. (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics, 357, 227253.CrossRefGoogle Scholar
Castelein, O., Soulestin, B., Bonnet, J.P. & Blanchart, P. (2001) The influence of heating rate on the thermal behavior and mullite formation from a kaolin raw material. Ceramics International, 27, 517522.CrossRefGoogle Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide differenciating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.CrossRefGoogle Scholar
Decrée, S., De Putter, T., Yans, J., Moussi, B., Philippe Recourt, Ph., Jamoussi, F., Bruyère, D. & Christian Dupuis, C. (2008) Iron mineralisation in Mio- Pliocene sediments of the Tamra iron mine (Nefza mining district, Tunisia): mixed influence of paedogenesis and hydrothermal alteration. Ore Geology Reviews, 33, 397410.CrossRefGoogle Scholar
Dondi, M. (1999) Clay materials for ceramic tiles from the Sassuolo District (Northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15, 337366.Google Scholar
European Standard NF EN159 (1991) Carreaux et dalles céramiques pressés à sec à absorption d’eau E > 10%, groupe B III, 8pp.+10%,+groupe+B+III,+8pp.>Google Scholar
Grabowska-Olszewska, B. (2003) Modelling physical properties of mixtures of clays: example of twocomponent mixture of kaolinite and montmorillonite. Applied Clay Science, 22, 251259.CrossRefGoogle Scholar
Hajjaji, W., Hachani, M., Moussi, B., Jeridi, K., Medhioub, M., Lopez-Galindo, A., Rocha, F., Labrincha, J.A. & Jamoussi, F. (2010) Mineralogy and plasticity in clay sediments from north-east Tunisia. Journal of African Earth Sciences, 57, 4146.CrossRefGoogle Scholar
Holtz, R.D. & Kovacs, W.D. (1981) The relationship between geology and landslide hazards of Atchison, Kansas, and vicinity. Current Research in Earth Sciences (Kansas Geological Survey), 244, part 3.Google Scholar
Jeridi, K., Hachani, M., Hajjaji, W., Moussi, B., Medhioub, M., Lopez-Galindo, A., Kooli, F., Zagouni, F., Labrincha, J.A. & Jamoussi, F. (2008) Technological behaviour of some Tunisian clays prepared by dry ceramic processing. Clay Minerals, 43, 339350.CrossRefGoogle Scholar
Jouenne, C.A. (1990) Traités de Céramiques et Matériaux Minéraux. 7th edition, Paris, France, 657 pp.Google Scholar
Joussein, E., Petit, S. & Delvaux, B. (2007) Behavior of halloysite clay under formamide treatment. Applied Clay Science, 35, 1724.CrossRefGoogle Scholar
LCPC, (1987) Limites d’Atterberg, limite de liquidité, limite de plasticité . Méthode d’essai nº19, Laboratoire Central des Ponts et Chaussées, 26 pp.Google Scholar
López-Galindo, A., Torres-Ruiz, J. & Gonzalez-López, J.M. (1996) Mineral quantification in sepiolite -palygorskite deposits using X-ray diffraction and chemical data. Clay Minerals, 31, 217224.CrossRefGoogle Scholar
Riahi, S., Soussi, M., Boukhalfa, K., Ben Ismail Lattrache, K., Stow, D., Khomsi, S. & Bedir, M. (2010) Stratigraphy, sedimentology and structure of the Numidian Flysch thrust belt in northern Tunisia. Journal of African Earth Sciences, 57, 109126.Google Scholar
Rouvier, H. (1977) Géologie de l’extrême nord Tunisien: tectoniques et paléogéographies superposées à l’extrémité orientale de la chaıˆne Nord-Maghrébine. Annales des mines et de la géologie. Edition du service géologique de Tunisie, 427 pp.Google Scholar
Talbi, F., Melki, F., Ben Ismail Lattrache, K., Alouani, R. & Tlig, S. (2008) Le Numidien de la Tunisie septentrionale: données stratigraphiques et interpré- tation géodynamique. Estudios Geológicos, 64, 3144.Google Scholar
Torres-Ruiz, J., López-Galindo, A., González, M. & Delgado, A. (1994) Geochemistry of Spanish sepiolite–palygorskite deposits: genetic considerations based on trace elements and isotopes. Chemical Geology, 112, 221245.CrossRefGoogle Scholar
Zevin, L.S. & Kimmel, G. (1995) Pp. 10-18 in: Quantitative X-ray Diffractometry. Springer, New York, USA.CrossRefGoogle Scholar