Published online by Cambridge University Press: 09 July 2018
Fixation of K by soil clays and selected reference clay minerals was induced by dry heat and hydrothermal procedures, at 100°C, 200°C and 380°C. Appreciable amounts were fixed at all temperatures. In the cases of the samples treated hydrothermally the amounts fixed increased with pressure.
Fixation by dry heating at 380°C was significantly greater than at 100°C and 200°C respectively. Fixation under hydrothermal conditions increased in order 380°C > 200°C > 100°C.
Reductions in cation exchange capacities (and surface areas) were associated with fixation, indicating that some fixation was due to ion exchange. Changes in mineralogy in some of the samples also support the conclusion that ion exchange was partly responsible for fixation. Some of the fixation under hydrothermal conditions was due to the formation of insoluble K-compounds - as for example the synthesis of a new mineral when one sample was treated.
The lattice-iron content of the clays may have influenced their hydrothermal behaviour. Thus the Princes Town Clay ( > 7-5 % lattice-iron) and three nontronites (≫ 7-5 % lattice-iron) showed appreciable lattice collapse after hydrothermal treatment, while Wyoming bentonite and hectorite (<3-5%) lattice-iron) showed no collapse at all.
The degree of crystallinity of the mineral may also have influenced its hydrothermal reaction. For example, the highly disordered soil kaolinite (St John's) was much more reactive than the more ordered Georgia kaolinite. Also, the more-ordered reference clays fixed relatively less K at 380°C than the less-ordered soil clays.