Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:07:14.718Z Has data issue: false hasContentIssue false

High-density bimodal bentonite blends for hydraulic sealings at the Ibbenbüren coalmine

Published online by Cambridge University Press:  02 January 2018

Felicitas Wolters*
Affiliation:
Clostermann Consulting GmbH & Co KG, Generationenweg 4, D-44225 Dortmund, Germany
Wiebke Baille
Affiliation:
Ruhr-Universität Bochum, Lehrstuhl für Grundbau, Boden- und Felsmechanik, Universitätsstrasse 150, Geb. IC/E5/ 109, D-44780 Bochum, Germany
Katja Emmerich
Affiliation:
Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Geb.330 Raum 155, D-76344 Eggenstein- Leopoldshafen, Germany
Eva Schmidt
Affiliation:
Stephan Schmidt KG, Bahnhofstrasse 92, D-65599 Dornburg, Germany
Christian Wolters
Affiliation:
Clostermann Consulting GmbH & Co KG, Generationenweg 4, D-44225 Dortmund, Germany
Franz Königer
Affiliation:
Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, Geb.330 Raum 155, D-76344 Eggenstein- Leopoldshafen, Germany
Jürgen Kunz
Affiliation:
RAG Antrazith GmbH Ibbenbüren, Osnabrücker Strasse 112, D-49477 Ibbenbüren, Germany
Volker Krase
Affiliation:
Zerna Planen und Prüfen, Lise-Meitner-Allee 11, D-44801 Bochum, Germany
Matthias Schellhorn
Affiliation:
Stephan Schmidt KG, Bahnhofstrasse 92, D-65599 Dornburg, Germany
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The two high-pressure water-retaining dams at the Ibbenbüren coalmine in Münsterland (Germany) have to perform reliably under the induced tension caused by further exploitation of the current mining area. The load-bearing and the sealing functions of the new barriers were separated and new sealing materials were developed. An innovative multilayer sealing system of bentonite and sandwiched equipotential layers (SANDWICH) supporting homogeneous swelling and sealing, independent of formation water (Nüesch et al., 2002), was applied in this project. A testing program of strain-controlled swelling pressure tests on compacted bentonite specimens and on a bentonite/sand mixture was conducted to ensure an adequate potential for swelling-pressure development.

The measurements under constant volume for dry densities between 1.45 g/cm3 and 1.67 g/cm3 showed an evolving swelling pressure between 1.04 and 1.8 MPa for 100% bentonite samples. Straincontrolled oedometer tests for zero strain and step-wise applied strain up to 2% revealed that a sufficient magnitude of swelling pressure existed at maximum applied strain.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

References

Agus, S.S. (2005) An Experimental Study on Hydro-Mechanical Characteristics of Compacted Bentonite-Sand Mixtures. Dissertation, Bauhaus-University, Weimar, Germany.Google Scholar
Baille, W., Tripathy, S. & Schanz, T. (2010) Swelling pressures and one-dimensional compressibility behaviour of bentonite at large pressures. Applied Clay Science, 48, 324333.10.1016/j.clay.2010.01.002Google Scholar
Bucher, F. (1986) Quelldruck von hochverdichteten Bentoniten. Technischer Bericht 84-18, 53 (NAGRA, editor). Institut für Grundbau und Bodenmechanik, ETH Zürich, Switzerland. http://www.nagra.ch/de/cat/publikationen/technischeberichte-ntbs/ntbs-1985-1986/downloadcenter.htm Google Scholar
Bucher, F. & Müller-Vonmoos, M. (1987) Bentonit als technische Barriere bei der Endlagerung hochradioak-tiver Abfälle. Pp. 51-64 in: Tonmineralogie und Bodenmechanik (H.J. Lang, editor). ETH, Zürich, Switzerland.Google Scholar
Butz, H.P. (2002) Jahresbericht 2000/2001. In: Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH. http://www.grs.de/sites/default/files/pdf/GRS-Annual-Report_2000_2001.pdf Google Scholar
Emmerich, K., Kemper, G., Königer, F., Schlaeger, S., Gruner, M., Gaßner, W., Hofmann, M., Nüesch, R. & Schuhmann, R. (2009) Saturation kinetics of a multilayer hydraulic sealing system exposed to rock salt brine. Vadose Zone Journal, 8, 332342.10.2136/vzj2008.0094Google Scholar
DIN 18130 (1998) Baugrund - Untersuchung von Bodenproben; Bestimmung des Wasserdurchlässigke-itsbeiwerts. Deutsches Institut für Normung, p. 20.Google Scholar
Gattermann, J.H. (1998) Theorie und Modellversuch für ein Abdichtungsbauwerk aus hochverdichteten Bentonitformateinen. Geotechnik in Forschung und Praxis, WBI Print 2, 216 S. Verlag Glückauf GmbH, Essen, Germany.Google Scholar
Goerke-Mallet, P. & Clostermann, M. (2011) Hochdruck-dämme unter Abbaueinwirkung-Maßnahmen zur Erhaltung der Gebrauchstauglichkeit. In: Energie und Rohstoffe Freiberg, Germany.Google Scholar
Herbert, H.-J. & Moog, H.C. (2002) Untersuchungen zur Quellung von Bentoniten in hochsalinaren Lösungen — Abschlussbericht. In: Gesellschaft für Anlagen und Reaktorsicherheit (GRS 179) mbH GRS. http://www.grs.de/sites/default/files/pdf/GRS-179.pdf Google Scholar
Kennedy, K., Verfuss, F. & Plötze, M. (2003) Engineered barrier emplacement experiment in Opalinus clay (EB) - Granular Material Backfill. Product Documentation, 197. NAGRA-DMT-ETH.Google Scholar
Kunz, J., Clostermann, M., Schanz, T. & Heimer, S. (2014) Untertägige Bauwerke unter Gebirgsbewegung — eine Herausforderung an die konstruktive Durchbildung. Pp. 73-86 in: Beiträge zum RuhrGeo Tag 2014 - Ende des Steinkkohlenbergbaus im Ruhrrevier: Realität und Perspektiven für die Geotechnik (T. Schanz, editor). Heft 50, Schriftenreihe des Lehrstuhls für Grundbau, Boden - und Felsmechanik, Bochum, Germany.Google Scholar
Madsen, F.T. (1998) Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109129.10.1180/000985598545318Google Scholar
Martino, J.B., Dixon, D.A., Holowick, B.E. & Kim, C.-S. (2011) Enhanced Sealing Project (ESP): Seal con-struction and instrumentation report (Limeted A.E.o. C. editor). APM-REP-01601-003, Nuclear Waste Management Organisation. http://www.nwmo.ca/publications?media_file_id=1876 Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tretraethylenepentamine. Clays and Clay Minerals, 47, 386388.10.1346/CCMN.1999.0470315Google Scholar
Naundorf, W. & Wollenberg, R. (1992) Herstellung von Bentonit-Granulat mit hoher Schüttdichte zur Bohrlochabdichtung NAGRA Technischer Bericht 92-06, 40. http://www.nagra.ch/data/documents/database/dokumente/$default/Default%20Folder/Publikationen/NTBs%201991-1993/d_ntb92-06.pdf Google Scholar
Nüesch, R., Brandelik, A., Hübner, C. & Schuhmann, R. (2002) Verschlussstopfen und Verfahren zum Verschließen von untertägigen Hohlräumen. Patent No. 10149972, Germany.Google Scholar
Oscarson, D.W. & Dixon, D.A. (1989) The effect of stea. onmontmorillonite. Applied Clay Science, 4, 279292.10.1016/0169-1317(89)90035-5Google Scholar
Sitz, P., Gruner, M. & Rumohorst, M. (2003) Bentonitdichtelemente für langzeitsichere Schachtverschlüsse im Salinar. Kali und Steinsalz, 3, 613.Google Scholar
Van Geet, M., Bastiaens, W., Volckaert, G., Weetjens, E., Sillen, X., Maes, N., Imbert, C., Billaud, P.,Touzé, G., Filippi, M., Plas, F., Villar, M.V., Garcia-Gutiérrez, M., Mingarro, M., Gens, A. & Vallejan, B. (2009) RESEAL II: A large-scale in situ demonstration test for repository sealing in an argillaceous host rock — Phase II, in: Nuclear Science and Technology (Commission, E. ed.) ftp://ftp.cordis.europa.eu/pub/fp6-euratom/docs/reseal-2-final-report-july-2009_en.pdfGoogle Scholar
Wang, Q., Tang, A., Cui, Y., Delage, P., Barnichon, I. & Ye, W. (2013) The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite-sand mixture. Soils and Foundations, 53, 232245.10.1016/j.sandf.2013.02.004Google Scholar
Wolters, F., Lagaly, G., Kahr, G., Nüesch, R. & Emmerich, K. (2009) A comprehensive characterisation of dioctahe-dral smectites. Clays and Clay Minerals, 57, 115133.10.1346/CCMN.2009.0570111CrossRefGoogle Scholar