Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:54:04.475Z Has data issue: false hasContentIssue false

Hematite Identification in Pseudo-Particles of Moroccan Rubified Soils

Published online by Cambridge University Press:  09 July 2018

R. Michalet
Affiliation:
Laboratoire de Biologie Alpine, Universitd Joseph Fourier, Grenoble L BP 53 X-F-38041 Grenoble Cedex, and
B. Guillet
Affiliation:
Laboratoire de Géochime organique, Université d'Orléans et URA-CNRS 724, BP 6759-F-45067 Orleans, France
B. Souchier
Affiliation:
Laboratoire de Biologie Alpine, Universitd Joseph Fourier, Grenoble L BP 53 X-F-38041 Grenoble Cedex, and

Abstract

In Moroccan calcareous mountains, red soils are distinguishable from brown soils, not only by their colour but also by their microaggregated structure. Clay mineral dispersion studies of these soils were carried out by increasing pH, after different treatments. The formation of the pseudo-particles appears to be dependent on the fixation of amorphous Fe on clay and on the chemical binding of those clays by amorphous Al-hydroxy-polycations. This can be explained by the high isoelectric point of ferric compounds such as ferrihydrite which are soluble in ammonium oxalate. Based on these results and using techniques of granulometric analysis, red clays aggregated in pseudo-particles were separated from less rubified clays. Hematite was identified in pseudoparticles from red soils and an increase of amorphous Fe has been shown in aggregated clays. These microstructural conditions characterizing rubification could also favour it, by creating microsites where water activity decreases and allows the crystallization of hematite by dehydration of ferrihydrite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barron, V. & Montealegre, L. (1986) Iron oxides and color of Triassic sediments: Application of the Kubelka- Munk theory. Am. J. Sci. 286, 792802.CrossRefGoogle Scholar
Beaudou, A.G., Fromaget, M. & Guichard, E. (1987) Analyse des organisations macro-et microstructurales de sols ferrallitiques centrafricains issus de roches basiques. Reunion Int. Micromorphologie des Sols, Paris, 119124.Google Scholar
Blackmore, A.V. (1973) Aggregation of clay by the products of iron (III) hydrolysis. Aust. J. Soil Res. 11, 7582.CrossRefGoogle Scholar
Boero, V. & Schwertmann, U. (1989) Iron oxide mineralogy of terra rossa and its genetic implications. Geoderma, 44, 319327.CrossRefGoogle Scholar
Bottner, P. (1971) Lapedogenese sur roches-mēres calcaires dans une sequence bioclimatique mediterraneo-alpine du sud de la France. These Doct. Etat., Montpellier, France.Google Scholar
Bresson, L.M. (1974) A study of integrated microscopy: rubefaction under wet temperate climate in comparison with Mediterranean rubefaction. Pp. 526-541 in: Soil Microscopy, (G.K. Rutherford, editor) Limestone Press, Kingston, Canada.Google Scholar
Bronger, A., Ensling, L., Gutlich, P. & Spiering, H. (1980) Mossbauer studies on the rubefication of terrae rossae in Slovakia. 4th Meet. European Clay Groups (abstract), 29.Google Scholar
Bruckert, S. & Selino, D. (1979) Mise en evidence de 1’origine biologique et chimique des structures microagregees foisonnantes des sols bruns ocreux. Pedologie, 28, 4659.Google Scholar
Cambier, C. & Picot, P. (1988) Nature des liasons kaolinite—oxyde de fer au sein de microagregats d’un sol ferrallitique. Sci. Sol, 26, 223239.Google Scholar
Campbell, A.S. & Schwertmann, U. (1984) Iron oxide mineralogy of placic horizons. J. Soil Sci. 35, 569582.CrossRefGoogle Scholar
Cardoso de Lima, P. & Eswaran, H. (1987) The microfabric of soils belonging to the acri-great groups of Oxisols. Reunion Int. Micromorphologie des Sols, Paris, 145150.Google Scholar
Communication de Pedologie et de Cartogrpahie des sols (CPCS) (1967) Classification des Sols, ENSA, Grignon.Google Scholar
Creutzberg, D. & Sombroek, W.G. (1987) Micromorphological characteristics of Nitosols. Reunion Int. Micromorphologie des Sols, Paris, 151155. Google Scholar
Desphande, T.L., Greenland, D.J. & Quirk, J.P. (1968) Changes in soil properties associated with the removal of iron and aluminium oxides. J. Soil Sci. 19, 108122.Google Scholar
Didier, Ph., Perret, D., Tardy, Y. & Nahon, D. (1985) Equilibres entre kaolinites ferrifēres, goethites alumineuses dans les systemes cuirasses. Role de l’activite de l’eau et de la taille des pores. Sci. Geol. Bull. 38, 383397.CrossRefGoogle Scholar
El-Swaify, S.A. & Emerson, W.W. (1975) Changes in the physical properties of soils clays due to precipitated aluminum and iron hydroxides. I—Swelling and aggregate stability after drying. Soil Sci. Am. Proc. 39, 10561063.CrossRefGoogle Scholar
Emberger, L. (1930) La vegetation de la region mēditerrandenne, essai d’une classification des groupements vegetaux. Rev. Gen. Bot. 42, 641662. 705721.Google Scholar
Fischer, W.R. & Schwertmann U . (1975) The formation of hematite from amorphous iron (Ill)-hydroxide. Clays Clay Miner. 23, 3337.CrossRefGoogle Scholar
Guillet, B., Burtiņ, G., Delcroix, P. & Gury, M. (1984) Le fer des calcaires et des terra fusca des plateaux lorrains (France). Pddologie, XXXIV, 301318.Google Scholar
Jeanroy, E., Guillet, B. & Oatiz, B. (1984) Applications pedogenetiques de l’etude des formes du fer par les reactifs d’extraction: cas des sols brunifies et podzolises sur roches cristallines. Sci. Sol, 3, 199211.Google Scholar
Jouaffre, D., Bruckert, S., Williams, A.F., Herbillon, A.J. & Kubler, B. (1991) Rubefaction post-Wurmienne en climat montagnard humide Jurassien. Role du pedoclimat et actualite du processus. Geoderma, 50, 239257.CrossRefGoogle Scholar
Kinniburgh, D.G., Syers, J.K. & Jackson, M.L. (1975) Specific adsorption of trace amounts of calcium and strontium by hydrous oxides of iron and aluminum. Soil Soc. Am. J. 39, 464470.CrossRefGoogle Scholar
Lamouroux, M. & Segalen, P. (1969) Etude comparee des produits ferrugineux dans les sols rouges et bruns mediterraneens du Liban. Sci. Sol, I, 3863.Google Scholar
Lamouroux, M., Loyer, J.Y. Bouleau, A. & Janot, Ch. (1977) Formes du fer des sols rouges et bruns fersiallitiques. Application de la spectrometrie Mossbauer. Cah. ORSTOM, ser Pedologie, XV, 199210.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Michalet, R. (1991) Une approche synthetique biopedoclimatique des montagnes mediterraneennes: exemple du Maroc septentrional. These Doct., Univ. Joseph Fourier, Grenoble I, France.Google Scholar
Pedro, G., Chauvel, A. & Melfi, J. (1976) Recherches sur la constitution et la genese des Terra Rossa Estructurada du Bresil. Ann. Agron. 27, 265294.Google Scholar
Robert, M., Berrier, J., Veneau, G. & Vincente, M.A. (1981) Action of amorphous compounds on clay particle associations. Proc. 7th Int. Clay Conf. Bologna-Pavia, 411—423.Google Scholar
Ruellan, A. (1971) Les sols ā profit calcaire differencie des plaines de la Basse Moulouya (Maroc oriental). Mem. ORSTOM, Paris, 54.Google Scholar
Schahabi, S. & Schwertmann, U. (1970) Der Einfluss von synthetischen Eisenoxiden auf die Aggregationzweier lossbodenhorizonte. Z. Pflanzenernahrt Bodenkd. 125, 193204.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat- losung. Z. Pflanzenernahrt Bodenkd. 105, 194202.CrossRefGoogle Scholar
Schwertmann, U. (1973) Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 53, 244246.CrossRefGoogle Scholar
Schwertmann, U. (1988) Occurrence and formation of iron oxides in various pedoenvironments. Pp. 267-302 in: Iron in Soils and Clay Minerals. (J.W. Stucki, B.A. Goodman & U. Schwertmann, editors). D. Reidel Publ. Co.CrossRefGoogle Scholar
Schwertmann, U. & Taylor, R.M. (1977) Iron oxides. Pp. 145-180 in: Minerals in Soil Environments. (J.B. Dixon & S.B. Weed, editors). Soil Sci. Soc. Am., Madison, Wisconsin.Google Scholar
Schwertmann, U., Murad, E. & Schulze, D.G. (1982) Is there Holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma, 27, 209223.Google Scholar
Soil Survey Staff (1975) Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. USDA Handbook No 436, US Government Printing Office, Washington DC.Google Scholar
Tardy, Y., Bardossy, G. & Nahon, D. (1988) Fluctuations de l’activite de l’eau et successions de mineraux hydrates et deshydrates au sein des profils lateritiques ferrugineux et bauxitiques. C.R. Acad. Sci. Paris, sēr. II, 307, 753759.Google Scholar
Torrent, J., Schwertmann, U., Fechter, H. & Alferez, F. (1983) Quantitative relationships between soil color and hematite content. Soil Sci. 136, 354358.CrossRefGoogle Scholar