Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:41:34.306Z Has data issue: false hasContentIssue false

Halloysite Formation Through In Situ Weathering of Volcanic Glass from Trachytic Pumices, Vico's Volcano, Italy

Published online by Cambridge University Press:  09 July 2018

P. Quantin
Affiliation:
ORSTOM, 70 route d'Aulnay, 93143 Bondy Cedex, France
J. Gautheyrou
Affiliation:
ORSTOM, 70 route d'Aulnay, 93143 Bondy Cedex, France
P. Lorenzoni
Affiliation:
ISSDS, Piazza d'Azeglio 30, Firenze, Italy

Abstract

The weathering of a trachytic pumice within a pyroclastic flow underlying an andic-brown soil on the volcano Vico has been studied. The main mineral formed is a spherical 10 Å halloysite which has been shown by SEM and in situ microprobe analysis to have formed directly from the glass. The major mineralogical characteristics as determined by XRD, IR, DTA, TEM and microdiffraction are typical of 10 Å halloysite. However, some minor mineralogical properties and the high Fe and K contents, suggest that it is an interstratification of 74% halloysite and 26% illite-smectite. The calculated formula of the hypothetical 2:1 minerals reveals an Fe- and K-rich clay, with high tetrahedral substitution, like an Fe-rich vermiculite, but the detailed structure of this mineral remains uncertain.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bidini, D., Quantin, P., Dabin, B., Lorenzoni, P. & Lulli, L. (1987) Studio pedologico deirapparato vulcanico di Vico; VII Aspetti genetici dei suoli delle colate piroclastiche. Am. 1st. Sper. Studio e Difesa del Suolo, Firenze, XVII, 127158.Google Scholar
Bonatti, S. & Galitelli, P. (1950) Metahalloysite Fe di farine fossili di Bagnoregio (Viterbo). Atti Soc. Toscana Sci. Nat. Ser. 57-100.Google Scholar
Caillere, S. & Henin, S. (1963) La Mineralogie des Argiles, p. 373. Ed. Masson, Paris.Google Scholar
Churchman, G.J. & Theng, B.K.G. (1984) Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Miner. 19, 161175.CrossRefGoogle Scholar
Cradwick, P.D. & Wilson, M.J. (1972) Calculated X-ray diffraction profiles for interstratified kaolinite- montmorillonite. Clay Miner. 9, 393406.CrossRefGoogle Scholar
Delvaux, B., Herbillon, A. J., Dufey, J. & Vielvoye, L. (1987) Relationships between clay mineralogy and K& plus; selectivity in a soil chronosequence on basaltic ash deposits from Cameroon. Summaries-Proc. 6th Meet. European Clay Groups, 198.Google Scholar
Farmer, VC (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals (Farmer, V. C., editor). Mineralogical Society, London.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F. W.D. (1976) A Mossbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5459.CrossRefGoogle Scholar
Herbillon, AJ, Frankart, R. & Vielvoye, L. (1981) An occurrence of interstratified kaolinite-smectite in a red black toposequence. Clay Miner. 16, 195-201.CrossRefGoogle Scholar
Imbert, T. & Desprairies, A. (1987) Neoformation of halloysite on volcanic glass in a marine environment. Clay Miner. 22, 179-185.CrossRefGoogle Scholar
Kunze, G. W. & Bradley, W.E. (1964) Occurrence of a tabular halloysite in a Texas soil. Clays Clay Miner. 12, 523527.CrossRefGoogle Scholar
Lenzi, G. & Mattias P, (1978) Materiali & ldquo;argillosi& rdquo; della regione volcanica sabatina I°argillificazione di formazioni piroclastiche. Rend. Soc. Ital. Mineral. Petrol. 34, 7599.Google Scholar
Lorenzoni, P., Quantin, P., Bidini, D. & Lulli, L. (1986) Studio pedologico deirapparato vulcanico di Vico; VI& mdash;Caratteristiche mineralogiche dei suoli delle colate piroclastiche. Ann. 1st Sper. Studio e Difesa del Suolo, Firenze, XVII, 99126.Google Scholar
Lulli, L., Bidini, D. & Quantin, P. (1988) Climo and litho-soil-sequence on the Vico Volcano (Italy). Cah. ORSTOM Ser. Pedol. XXIV (in press).Google Scholar
Parfitt, R. & Henmi, T. (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays. Soil Sci. Plant Nutr. 28, 183190.CrossRefGoogle Scholar
Quantin, P. (1982) Proposition du taux de capacite d& apos;echange de cations dependante du pH, comme critere de classification des Andosols des Nouvelles-Hebrides (Vanuatu). Cah. ORSTOM, Ser. Pedol XIX, 369-380.Google Scholar
Quantin, P., Herbillon A.J., Janot, C. & Siefferman, G. (1984) L'halloysite blanche riche en fer de Vate (Vanuatu). Hypothese d& apos;un edifice interstratifie halloysite-hisingerite. Clay Miner. 19, 629643.CrossRefGoogle Scholar
Quantin, P. (1985) Presence of iron-rich allophane or hisingerite in an Eutrandept derived from basaltic ash, Aoba& #x00BB; Vanuatu. Abstracts Int. Clay Conf. Denver, p. 192.Google Scholar
Quantin, P. & Rambaud, D. (1987) Genesis of spherical halloysite from basaltic ash, at Ambrym (Vanuatu) Pp. 505522 in: Geochemistry and Mineral Formation at the Earth Surface (Rodriguez Clemente, R. & Tardy, Y., editors). CSIC, Madrid.Google Scholar
Shayan, A. (1984) Hisingerite material from a basalt quarry near Geelong, Victoria, Australia. Clays Clay Miner. 32, 272278.CrossRefGoogle Scholar
Shoji, S. & Masui, J. (1971) Opaline silica of recent volcanic ash soils in Japan. J. Soil Sci. 22, 101108.CrossRefGoogle Scholar
Sollevanti, F. (1983) Geologic, volcanologic, and tectonic setting of the Vico-Cimino area, Italy. J. Volcanol. Geotherm. Res. 17, 203217.CrossRefGoogle Scholar
Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes. Morphology and composition of halloysite. Proc. Int. Clay Conf. Bologna-Pavia, 573584.Google Scholar
Thomassin, J.H., Crovisier, J.L., Touray, J.C., Juteau T., , & Boutonnat, F. (1985) Uapport de la geochimie experimentale a la comprehension des interactions eau de mer-verre basaltique entre 3°et 90°'C: doiin6es de l& apos;analyse ESCA, de la microscopie et de la microdiffraction electronique. Bull. Soc. GeoL 8, t.I, 2, 217222.CrossRefGoogle Scholar
Wada, K. & Kakuto, Y. (1985) Embryonic halloysites in Ecuadorian soils derived from volcanic ash. Soil Sci. Soc. Amer. J. 49, 13091318.CrossRefGoogle Scholar
Wada, K. & Mizota, C. (1982) Iron rich halloysite with crumpled lamellar morphology from Hokkaido, Japan. Clays Clay Miner. 30, 315317.CrossRefGoogle Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals, p. 153. Elsevier, Amsterdam.Google Scholar