Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T06:09:36.942Z Has data issue: false hasContentIssue false

Gradual H/D substitution in synthetic germanium bearing talcs: a method for infrared band assignment

Published online by Cambridge University Press:  09 July 2018

F. Martin
Affiliation:
Université Paul Sabatier , Laboratoire de Minéralogie-Cristallographie, UMR 5563 CNRS, 39 Allées Jules Guesde, F-31000 Toulouse
S. Petit
Affiliation:
Université de Poitiers, Laboratoire ‘Hydr. A.S.A.’, UMR 6532 du CNRS, 40 Avenue du Recteur Pineau, F-86022 Poitiers Cedex
O. Grauby
Affiliation:
CRMC2-CNRS, Campus Luminy, Case 913, F-13288 Marseille Cedex 9, France
M. P. Lavie
Affiliation:
Université Paul Sabatier , Laboratoire de Minéralogie-Cristallographie, UMR 5563 CNRS, 39 Allées Jules Guesde, F-31000 Toulouse

Abstract

The deuteration technique was used to assign unknown infrared (IR) bands of Ge-bearing talcs. Procedures to achieve partial or complete H/D replacement in synthetic Ge-bearing (Mg, Ni and Co)-talcs have been investigated. From the spectral shift of IR absorption bands in the 4000–300 cm-1 region resulting from the H-D substitution, the IR bands of vibrations of Ge-bearing talcs could be identified and synthetic Ge-bearing talcs showed significantly different IR spectra from those for Si-talcs. After deuteration of synthetic Ge-bearing talcs, the unknown bands were attributed either to hydroxyl groups or to Ge–O vibrations of the clay skeleton, and the spectra were interpreted fully.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Decarreau, A. (1983) Etude experiméntale de la cristallogénése des smectites. Mesure des coefficients de partage smectite-solutions aqueuses pour les métaux M2+ de la premiere serie de transition. Man. Sci. Géol. 74, Strasbourg, France.Google Scholar
Decarreau, A., Grauby, O. & Petit, S. (1992) The actual distribution of octahedral cations in 2:1 clay minerals: results from clay synthesis. Appl. Clay Sci. 7, 147167.Google Scholar
Delia Ventura, G., Robert, J.-L., Bény, J.M., Raudsepp, M. & Hawthorne, F.C. (1993) The OH-F substitution in Ti-rich potassium richterite: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K2O-Na2-CaO-MgO-SiO2-TiO2-H2O-HF. Am. Miner. 78, 980987.Google Scholar
Farmer, V.C. (1958) The infrared spectra of talc, saponite and hectorite. Mineral. Mag. 31, 829845.Google Scholar
Farmer, V.C. & Russell, J.D. (1967) Infrared absorption spectrometry in clay studies. Clays Clay Miner. 15, 121142.Google Scholar
Farmer, V.C., Russell, J.D. & Ahlrichs, J.L. (1968) Characterization of clay minerals by infrared spectroscopy. Trans. 9th Int. Congr. Soil. Sci. 3, 101110.Google Scholar
Grauby, O., Petit, S., Enguehard, F., Martin, F. & Decarreau, A. (1991) XRD, EXAFS and FTIR octahedral cation distribution in synthetic Ni-Co kerolites. Proc. 7th Euroclay Conf. Dresden, 2, 447452.Google Scholar
Ishida, K. (1990) Identification of infrared OH librational bands of talc-willemseite solid solutions and Al(IV)- free amphiboles through deuteration. Mineral. J. 15(3), 93-104.Google Scholar
Ishii, M., Shimanouchi, T. & Nakahira, M. (1967) Far infrared absorption spectra of layer silicates. Inorg. Chim. Acta, 1, 387392.CrossRefGoogle Scholar
Langer, K. & Lattard, D. (1980) Identification of a low energy OH valence vibration in zoisite. Am. Miner. 50, 779783.Google Scholar
Luth, W.C. & Ingamells CO. (1965) Gel preparation of starting materials for hydrothermal experimentation. Am. Miner. 50, 255258.Google Scholar
Martin, F., Ildefonse Ph., Hazemann, J.L., Petit, S., Grauby, O. & Decarreau, A. (1996) X-ray absorption fine structure and Fourier transform Infrared studies of the Ge-Si-solid solution in talcs. Eur. J. Miner. 8, 289299.Google Scholar
Martin, F., Petit, S., Decarreau, A., Grauby, O., Hazemann, J.L. & Noack, Y. (1992) Experimental study of Si-Ge tetrahedral solid solution in Ni-Co-Mg talcs. Thin Solid Films, 222, 189195.Google Scholar
Petit, S., Robert, J.-L., Decarreau, A., Besson, G., Grauby, O. & Martin, F. (1995) Contribution of spectroscopic methods to 2:1 clay characterization. Bull. Centres Reck Explor.-Prod. Elf Aquitaine, 19, 119148.Google Scholar
Robert, J.-L., Bény, J.M., Delia Ventura, G. & Hardy, M. (1993) Fluorine in micas: crystal-chemical control of the OH-F distribution between trioctahedral and dioctahedral sites. Eur. J. Miner. 5, 718.Google Scholar
Roy, D.M. & Roy, R. (1955) Synthesis and stability of minerals in the system MgO-Al203-Si02-H20. Am. Miner. 40, 147178.Google Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infrared spectra. Mineral. Mag. 37, 292, 869.CrossRefGoogle Scholar
Shirozu, H. & Ishida, K. (1982) Infrared study of some 7 Å and 14 Å layer silicates by deuteration. Mineral. J. 11(4), 161-171.Google Scholar
Stubican, V. & Roy, R. (1961) A new approach to assignment of infrared absorption bands in layerstructure silicates. Zeits. Kristallogr. 115, 200214.CrossRefGoogle Scholar
Vedder, W. (1964) Correlations between infrared spectrum and chemical compositions of micas. Am. Miner. 49, 736767.Google Scholar