Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T01:56:57.009Z Has data issue: false hasContentIssue false

Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain)

Published online by Cambridge University Press:  09 July 2018

M. D. Ruiz Cruz
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain
B. Andreo
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071, Málaga, Spain

Abstract

In the Maláiguide Complex (Betic Cordilleras, Spain), dickite is widely developed in clastic Permo-Triassic sequences. The lateral extent stretches at least 300 km along the Betic range, whilst vertical extent is variable and appears limited to the lowest 20–150 m of these sequences. Textural, chemical and crystallochemical characteristics of the dickite, illite/mica and chlorite in dickite-bearing rocks and in the overlying (Permo-Triassic) and underlying (Carboniferous) rocks have been investigated to determine the approximate conditions in which dickite has developed. Using the chlorite geothermometer (based on A1IV contents), temperatures of 146±28°C and 169±12°C have been deduced for two Permo-Triassic members, and 305±12°C for Carboniferous. The Si content in illites has been used as a geobarometer, and pressures of 4.8±2 kbar have been estimated in Carboniferous rocks and tentative pressures of 2.7±3 and 2.1±2 kbar in Permo-Triassic members. Chemical evolution of phyllosilicates is accompanied by increasing illite crystallinity and % 2M1 polytype.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azièma, J. (1961) Etude géologique des abords de Máilaga (Espagne). Estudios Geol. 17, 131160.Google Scholar
Bjorlikke, K. (1980) Clastic diagenesis and basin evolution. Rev. Inst. Inv. Geol. Dip. Prov. Univ. Barcelona 34, 11511171.Google Scholar
Boles, J. R. & Franks, S. G. (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation. J. Seal. Pet. 49, 5570.Google Scholar
Boulin, J. (1970) Les Zones Internes des Cordilléres Bétiques de Mállaga à Motril. Ann. Hébert et Haug, Tray. Lab. GéoL Fac. Sc. Univ. Paris 10, 239 pp.Google Scholar
Bourgois, J. (1978) La transversale de Ronda (Cordillères Bétiques, Espagne). Données géologiques pour un modèle d'évolution de l'arc de Gibraltar. Ann. Sci. Univ. Besançon. Géol. 3éme série 30, 445 pp.Google Scholar
Caritat, P. DE, Hutcheon, I. & Walshe, J.L. (1993) Chlorite geothermometry: A review. Clays Clay Miner. 41, 219239.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23, 471485.CrossRefGoogle Scholar
Cathelineau, M. & Nxeva, D. (1985) A chlorite solid solution geothermometer. The Los Azufres geothermal system (Mexico). Contrib. Mineral Petrol 91, 235244.Google Scholar
Chalouan, A. & Michard, A. (1990) The Gomarides nappes, Rif coastal range, Morocco: A variscan chip in the alpine belt. Tectonics 9, 15651583.Google Scholar
Ctjrtis, C.D., Hughes, C.R., Whiteman, J.A. & Whittle, C.K. (1985) Compositional variation within some sedimentary chlorites and some comments on their origin. Mineral. Mag. 49, 375–386.Google Scholar
Diaz De Federico, A., Torres Roldan, R. & Puga, E. (1990) The rock series of the Betic substratum. Pp. 12–13, 19–29 in: Le Bassin Néogène du Domain Bétique Oriental. Document et Travaux, IGAL, Paris.Google Scholar
Didon, J., Durand-Delga, M. & Kornprobst, J. (1973) Homologies géologiques entre les deux rives du détroit de Gibraltar. Bull. Soc. géol. Fr. 15, 77105.Google Scholar
Dunoyer De Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology 15, 281326.CrossRefGoogle Scholar
Durand-Delga, M. (1968) Coup d'oeil sur les unités Malálguides des Cordillères Bétiques (Espagne). C.R. Acad. Sc. 266, 190–193.Google Scholar
Egeler, C.G. & Fontbote, J.M. (1976) Aperçu géologique sur les parties centrales et orientales des Cordillères Bétiques. Bull. Soc. géol. Fr. 18, 571582.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Miner. 24, 233253.CrossRefGoogle Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthm, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Miner 28, 325352.CrossRefGoogle Scholar
Felder, T.E. (1978) Zur geologischen Entwicklung der Betischen Internzonen der westlichen Serranfa de Ronda (Prov, Málaga, Spanien). Mitt. Geol. Inst. ETH Zurich 222, 168 pp.Google Scholar
Fontbote, J.M. & Vera, J.A. (1984) La Cordillera Bética. Pp. 205–343 in: Geología de España, Inst. Geol. Min. Esp. 2.Google Scholar
Fuchtbauer, H. (1983) Facies controls on sandstone diagenesis. Pp. 268–288 in: Sediment Diagenesis (Parker, A. & Selwood, B.W., editors). Reidel Publishing Company, Dordrecht.Google Scholar
Geel, T. (1973) The geology of the Betic of Málaga, the Subbetic and the zone between these units in the Velez Rubio area (SE Spain). Sym. Sedimentation Jurassique W-European, ASF spec. publ. 1, 335344.Google Scholar
Herbig, H.G. (1983) E1 Carbonifero de las Cordilleras Béticas. Pp. 345-355 in: Carbonifero y Pérmico de Espana. X Congreso lnt. Estrat. Geol. Carbonífero, Madrid, 1983.Google Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (lowtemperature) chlorites. Clay Miner. 26, 149168.CrossRefGoogle Scholar
Hutcheon, I., Oldershaw, A. & Ghent, E.A. (1980) Diagenesis of Cretaceous sandstones of the Kootenay formation at Elk Valley (Southeastern British Columbia) and Mt Allan (Southwestern Alberta). Geochim. Cosmochim. Acta 44, 14251435.CrossRefGoogle Scholar
Ianovict, V. & Neacsu, G. (1968) Note sur la présence de la uacrite dans les argiles du Lias inférieur des montagnes Padurea Craiului. Stud. Cerc. Geol. Geofiz. Geogr., Serv. Geol. 13, 309314.Google Scholar
Islam, A.K.M.E. & Lotse, E.G. (1986) Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques. Clay Miner. 21, 3142.Google Scholar
Jowett, E.C. (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Meeting (Toronto, 1991), Program with Absteacts 16, A62.Google Scholar
Kisch, H.J. (1990) Calibration of the anchizone: a critical comparison of illite crystallinity scales used for definition. J. Met. Geol. 8, 3146.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Met. Geol. 9, 665670.Google Scholar
Kranidiotis, P. & Maclean, W.H. (1987) Systematic of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 82, 18981911.CrossRefGoogle Scholar
KüBLER, B. (1968) Evaluation quantitative du métamorphisme par la cristallinité de lillite. Etat des progrès réalisés ces dernieres années. Bull. Centre Rech. Pau. S.N.P.A. 2, 385397.Google Scholar
Mäkel, G.G. (1980) The Geology of the Southern Sierra de Espaaa (Betic Cordilleras, SE Spain). Thesis, Univ. Amsterdam, The Netherlands.Google Scholar
Mäkel, G.G. (1985) The geology of the Malaguide Complex and its bearing on the Geodynamic evolution of the Betic-Rif orogen (Southern Spain and northern Morocco). Gua Papers of Geology, 22, 263 pp.Google Scholar
Martin Algarra, A. (1987) Evolución geológica alpina del contacto entre las Zonas Internas y Externas de las Cordilleras Béticas (Sector central y occidental). Tesis doctoral, Univ. Granada, Spain.Google Scholar
Massone, H.J. & Schreyer, W. (1987) Phengite geobarometry based on the limiting assemblage with Kfeldspar, phlogopite, and quartz. Contrib. Mineral. Petrol. 96, 212224.Google Scholar
Maxwell, D.T. & Hower, J. (1967) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series. Am. Miner. 52, 843–857.Google Scholar
Meunier, A. & Velde, B. (1982) Phengitization, sericitization and potassium-beidellite in a hydrothermally altered granite. Clay Miner. 17, 285299.CrossRefGoogle Scholar
Mollat, H. (1968) Schinchtenfolge und tektonischer Ban der Sierra Blanca und ihrer Umgebung (Betische Kordilleren, Sud Spanien). Geol. Jb. 84, 471532.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1 – 128 in: Chemistry of Clays and Clay Minerals. (Newman, A.C.D., editor) Mineralogical Society, London.Google Scholar
Roep, Th.B. (1972) Stratigraphy of the Permo-Triassic Saladilla formation and its tectonic setting in the Betic of Malaga (Velez Rubio region, SE Spain). Proc. Kon. Ned. Akad. Wet. B75, 223247.Google Scholar
Ruiz Cruz, M.D. (1995) Some mixed-layer minerals of very low-grade metamorphic origin. Abstract Eur. Clay Conf., Leuven, 333.Google Scholar
Ruiz Cruz, M.D. (1996a) Criterion mineralógicos utilizados en el anáilisis del Permotrias Maláiguide. Cuad. de Geol. Ibérica, (in press).Google Scholar
Ruiz Cruz, M.D. (1996b) Nacrite, dickite and mixedlayers dickite/nacrite from the Betic Cordilleras (Spain). Clays Clay Miner. (in press).Google Scholar
Ruiz Cruz, M.D. & Moreno Real, L. (1993) Diagenetic kaolinite/dickite (Betic Cordilleras, Spain). Clays Clay Miner. 41, 570579.Google Scholar
Ruiz Cruz, M.D., Moreno Real, L. & Galan, E. (1995) Kaolinite-dickite transformation by tectonic deformation in the Campo de Gibraltar area (S Spain). Abstract Eur. Clay Conf., Leuven, 336–337.Google Scholar
Shultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper 391-C, 31 pp.CrossRefGoogle Scholar
Shutov, V.D. & Dolmatova, T.V. (1961) Modifications de la kaolinite dans les roches terrigenes lors de l'épigenese en profondeur. Acta Univ. Carol., Prague, Geol. Suppl. 1, 393415.Google Scholar
Simon, O.J. & Visscher, H. (1983) El Pérmico de las Cordilleras Béticas. Pp. 453-499 in: Carbonffero y Pérmico de Espana. X Congreso Int. Estrat. Geol. Carbonffero, Madrid, 1983. Google Scholar
Velde, B. (1965) Phengite micas: Synthesis, stability and natural occurrence. Am. J. Sci. 263, 886–913.CrossRefGoogle Scholar
Velde, B. (1967) Si+4 content of natural phengites. Contrib. Mineral. Petrol. 14, 250258.Google Scholar
Velde, B. (1968) The effect of chemical reduction on the stability of pyrophyllite and kaolinite in pelitic rocks. J. Sed. Pet. 38, 1316.Google Scholar
Velde, B. (1984) Electron microprobe analysis of clay minerals. Clay Miner. 19, 243247.Google Scholar
Velde, B. (1985) Clay Minerals: a Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, Amsterdam.Google Scholar