Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:44:07.635Z Has data issue: false hasContentIssue false

Ga/Al substitutions in synthetic kaolinites and smectites

Published online by Cambridge University Press:  09 July 2018

F. Martin
Affiliation:
Université Paul Sabatier, Laboratoire de Minéralogie-Cristallographie, UMR 5563 CNRS, 39 Allées Jules Guesde, F-31000 Toulouse
S. Petit
Affiliation:
Université de Poitiers, Laboratoire 'Hydr.A.S.A.', URA 721 du CNRS, 40 Avenue du Recteur Pineau, F-86022 Poitiers Cedex
A. Decarreau
Affiliation:
Université de Poitiers, Laboratoire 'Hydr.A.S.A.', URA 721 du CNRS, 40 Avenue du Recteur Pineau, F-86022 Poitiers Cedex
Ph. Ildefonse
Affiliation:
Universités Paris 6 et 7, Laboratoire de Minéralogie-Cristallographie, CNRS 09 et IPGP, 4 Place Jussieu, F-75252 Paris Cedex 05
O. Grauby
Affiliation:
CRMC2-CNRS, Campus Luminy, Case 913, F-13288 Marseille Cedex 9
D. Beziat
Affiliation:
Université Paul Sabatier, Laboratoire de Minéralogie-Cristallographie, UMR 5563 CNRS, 39 Allées Jules Guesde, F-31000 Toulouse
Ph. de Parseval
Affiliation:
Université Paul Sabatier, Laboratoire de Minéralogie-Cristallographie, UMR 5563 CNRS, 39 Allées Jules Guesde, F-31000 Toulouse
Y. Noack
Affiliation:
Université d'Aix-Marseille III, Laboratoire de Géosciences de l'Environnement, CNRS FU 017, Europôle Méditerranden de l'Arbois, BP 80, F-13545 Aix en Provence Cedex 4, France

Abstract

The Ga for A1 substitution in kaolinites and smectites was studied using clay synthesis from initial gels having an (Al + Ga)/Si ratio of kaolinites and MGa = Ga/(Ga + A1) ratio ranging from 0 to 1. Only kaolinite was obtained for MGa in the range 0-0.10. For higher MGa, synthesized clays were both kaolinite and beidellite, or pure beidellites. The evolution of b cell parameters, and the appearance of a vAI-OH-Ga absorption band at 3600 cm-1 in FFIR spectra, proves the progressive substitution of AI by Ga in kaolinite. The low substitution of AI by Ga in kaolinite can be correlated with the large difference in ionic radii between Al3+ and Ga3+ which causes a large increase in cell dimensions. By contrast, the incorporation of Ga in smectites is easy and can be complete.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrios, J., Planqon, A., Cruz, M.I. & Tchoubar, C. (1977) Qualitative and quantitative study of stacking in a hydrazine treated kaolinite-relationship with infrared spectra. Clays Clay Miner. 25, 422429.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etudes des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. Miner. 105, 439455.Google Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of their specimens. J. Microsc. 103, 203207.CrossRefGoogle Scholar
Delineau, T., Allard, T., Muller, J.P., Barres, O., Yvon, J. & Cases, J.M. (1994) FrlR reflectance vs. EPR studies of structural iron in kaolinites. Clays Clay Miner. 42, 308320.CrossRefGoogle Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-363 in: The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Greene-Kelly, R. (1953) The identification of montmorillonoids in clay. J. Soil Sci. 4, 233247.Google Scholar
Hiéronymus, B., Boulegue, J. & Kotschoubey, B. (1990) Gallium behaviour in some intertropical environment alterations. Geosciences of the Earth's Surface and of Mineralogical Formation., 2nd Int. Sym., Aixen- Provence, 78-82.CrossRefGoogle Scholar
Hoffmann, U. & Klemen, R. (1950) Verlust des Austauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Allg. Chem. 262, 9599.Google Scholar
Jackson, M.L. (1958) Soil Chemical Analysis, 3rd ed., Prentice Hall, Englwoods Cliffs, New Jersey.Google Scholar
Katrak, F.E. & Agarwal, J.C. (1981) Gallium: long-run supply. J. Metals, 33–36.Google Scholar
Kato, E., Kanaoka, S. & Inagaki, S. (1977) Infrared spectra of kaolin minerals in OH region (I); on the glass slide method for the measurement of the infrared spectra in OH region of clay minerals. Rept. Govt. lndustr. Agoya, 26, 203210.Google Scholar
De Kimpe, C., Kodama, H. & Rivard, R. (1981) Hydrothermal formation of kaolinite material from aluminosilicate gels. Clays Clay Miner. 29, 446450.Google Scholar
Lietard, O. (1977) Contribution a I'etude des propriétés physicochimiques, cristallochimiques et morphologiques des kaolins. PhD thesis, INPL Nancy, France.Google Scholar
Nesbitt, H.W. (1977) Estimation of the thermodynamic properties of Na-Ca- and Mg-beidellites. Can. Miner, 15, 2230.Google Scholar
Petit, S. & Decarreau, A. (1990) Hydrothermal (200°C synthesis and crystal chemistry of iron-rich kaolinites. Clay Miner. 25, 181196.Google Scholar
Petit, S., Robert, J.L., Decarreau, A., Besson, G., Grauby, O. & Martin, F. (1995) Contribution of spectroscopic methods to 2:1 clay characterization. Bull. Elf Aquitaine Prod. 19, 119147.Google Scholar
Plançon, A. & Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction. II. Nature and proportion of defects in natural kaolinites. Clays Clay Miner. 25, 436450.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD a Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays. R.C. Reynolds, 8 Brook Rd., Hanover, NH 03744, USA.Google Scholar
Rouxhet, P.G., Samudacheata, N., Jacobs, H. & Anton, O. (1977) Attribution of the OH stretching band of kaolinites. Clay Miner. 12, 171179.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751767.Google Scholar
Siffert, B. & Wey, R. (1961) Sur la synthése de la kaolinite h la temp6rature ordinaire. C. R. Acad. Sci. Paris, 253, 142144.Google Scholar
Środoń, J., Morgan, D.J., Elsinger, E.V., Eberl, D.D. & Karlinger, M. (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner. 34, 368378.Google Scholar
Stubican, V. & Roy, R. (1961) A new approach of assignment of infra-red absorption bands in layerstructure silicates. Zeitschrift Kristall. Bd. 115, S., 200-214.Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H. & Kitamura, M. (1985) Growth conditions and genesis of spherical and platy kaolinite. Clays Clay Miner. 33, 200206.CrossRefGoogle Scholar
Wolf, A. (1967) Contribution á l'étude du mécanisme de formation des argiles: réaction de la silice en solution avec les cations Al, In, Ni et Cu. PhD thesis, Univ. Strasbourg, France.Google Scholar