Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T06:22:26.726Z Has data issue: false hasContentIssue false

Fine-grained weathering products in waste disposal from two sulphide mines in the northern Apennines, Italy

Published online by Cambridge University Press:  09 July 2018

E. Dinelli
Affiliation:
Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, P.zza di Porta S. Donato 1; 1-40126 Bologna, Italy
N. Morandi
Affiliation:
Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, P.zza di Porta S. Donato 1; 1-40126 Bologna, Italy
F. Tateo
Affiliation:
Istituto di Ricerca sure Argille - CNR, Via S.Loja; 1-85050 Tito Scalo (PZ), Italy

Abstract

From mineralogical and chemical characterization of two waste-rock piles from Vigonzano and Libiola sulphide mines in the northern Apennines, two types of fine-grained weathering products were recognized, One, from the Vigonzano mine, has a typical blue colour and consists of the Cu-Al sulphate of the woodwardite group. Its formation is related to an alkaline geochemical barrier, it is rather stable in acidic solution, and it controls Cu and Zn dispersion in the surrounding environment. The other group of sediments has a typical ochreous colour. Vigonzano samples consist mostly of goethite, whereas ferrihydrite is abundant in the Libiola sample. The ochreous sediments are enriched in Co, As, Mo, Se and Mn, thus significantly reducing the potential environmental hazard of the site, whereas solubility tests indicated possible problems due to AI dissolution at Libiola.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriano, D.C. (1986) Trace Elements in the Terrestrial Environment, pp. 1–533. Springer-Verlag, New York.CrossRefGoogle Scholar
Bertolani, M. (1959) Ricerehe su rocce prasinitiche ed anfibolitiche e sul giacimento metallifero di Vigonzano. Atti Soc. Nat. Mat. Modena, 89/90, 112/128.Google Scholar
Bigham, J.M., Schwertmann, U. & Carlson, L. (1992) Mineralogy of precipitates formed by the biogeochemical oxidation of Fe(II) in mine drainage. Catena supp. 21, 219232.Google Scholar
Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. & Wolf, M. (1996) Schwertmannite and the chemical modelling of iron in acidic sulfate waters. Geochim. Cosmochim. Acta, 60, 21112121.Google Scholar
Bowell, R.J. & Bruce, I. (1995) Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall. Appl. Geochem, 10, 237250.CrossRefGoogle Scholar
Brigo, L. & Ferrario, A. (1974) Le mineralizzazioni helle ofioliti della Liguria orientale. Rend. Soc. It. Min. Petrol. 30, 305316.Google Scholar
Brown, G. (1980) Associated Minerals. Pp. 361-410 in: Crystal Structure of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society of Great Britain, London.Google Scholar
Davies, B.E. (1980) Trace element pollution. Pp. 287-351 in: Applied Soil Trace Elements (Davies, B.E., editor). John Wiley & Sons, New York.Google Scholar
Davies, B.E. (1983) Heavy metal contamination from base metal mining and smelting: implications for man and his environment. Pp. 425–462 in: Applied Environmental Geochemistry (Thornton, I., editor). Academic Press, London.Google Scholar
Dinelli, E. (1994) Studio ambientate della dispersione di elementi chimici in aree di miniera nella regione Emilia-Romagna. Tesi di dottorato, Universith di Bologna, Italy.Google Scholar
Dinelli, E. & Lombini, A. (1996) Metal distribution in plants growing on copper mine spoils in Northern Apennines (Italy): the evaluation of seasonal variations. Appl. Geochem. 11, 375–385.Google Scholar
Dinelli, E., Cortecci, G. & Lucchini, F. (1996) Geochemical characterization of sulfide waste rock piles from mining workings in northern Apennines, Emilia province, Italy. Miner. Petrog. Acta, XXXIX, 109-123.Google Scholar
Ferrario, A. & Garuti, G. (1980) Copper deposits in the basal breccia and volcano-sedimentary sequences of the Eastern Ligurian Ophiolites (Italy). Min. Deposita, 15, 291303.Google Scholar
Fitzpatrick, R.W. & Schwertmann, U. (1982) Al-substituted goethite – an indicator of pedogenie and other weathering environments in South Africa. Geoderma, 27, 335-347.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-ray Spectrom. 1, 151–154.CrossRefGoogle Scholar
Franzini, M., Leoni, L. & Saitta, M. (1975) Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Rend. Soc. It. Min. Petrol. 31, 365378.Google Scholar
Gasparotto, G. (1988) Evoluzione dei clinopirosseni in hasalti e “Monzoniti” triassici di Cima Pape (Dolomiti Orientali, BL). Miner. Petrogr. Acta, XXXI, 43-68.Google Scholar
Geological Society of America (1991) Rock Color Chart. Google Scholar
Jones, K.C., Lepp, N.W. & Obbard, J.P. (1993) Other metals and metalloids. Pp. 280–321 in: Heavy Metals in Soils (Alloway, B.J., editor). Blackie, Glasgow.Google Scholar
Leoni, L. & Saitta, M. (1976) X-ray fluorescence analysis of 29 trace elements in rock and mineral standard. Rend. Soc. It. Min. Petrol. 32, 497510.Google Scholar
Leoni, L., Menichini, M. & Saitta, M. (1982) Determination of S, CI, and F in silicate rocks by X-ray fluorescence analyses. X-ray Spectrom. 11, 156-158.Google Scholar
Neal, R.H. (1993) Selenium. Pp. 237-260 in: Heavy Metal.; in Soils (Alloway, B.J., editor). Blackie, Glasgow.Google Scholar
Nickel, E.H. (1976) New data on woodwardite. Mineral. Mag. 43, 644647.Google Scholar
O'Neill, P. (1993) Arsenic. Pp. 83-99 in: Heavy Metals in Soils (Alloway, B.J., editor). Blackie, Glasgow.Google Scholar
Perehnan, A.I. (1986) Geochemical barriers: theory and practical applications. Appl. Geochem. 1, 669–680.Google Scholar
S.I.S.S. (1985) Metodi Normalizzati di Analisi del Suolo, pp 1 – 100. Edagricole, Bologna.Google Scholar
Strunz, H. (1982) Mineralogische Tabellen, 8th ed. Geest & Portig.Google Scholar
Stumm, W. & Morgan, J.J. (1996) Aquatic Chemistry. Third edition, pp. 1-1022. John Wiley & Sons, New York.Google Scholar
Tateo, F. & Dinelli, E. (1997) Mineralogy and metal content in the clay fraction of soils, stream sediments and tailings of the Vigonzano Cu-mine area (PC, Northern Italy). Abstracts llth Int. Clay Conj., Ottawa, A73.Google Scholar
Thornber, M.R. & Wildman, J.E. (1984) Supergene alteration of sulphides, VI. The binding of Cu, Ni, Zn, Co, and Pb with gossan (iron-bearing) minerals. Chem. Geol. 44, 399434.Google Scholar
Zuffardi, P. (1977) Ore/mineral deposits related to the Mesozoic ophiolites in Italy. Pp. 314–323 in: Mineral Deposits of the Alpine Epoch in Europe (Schneider, H.J., editor). Springer-Verlag, Berlin.Google Scholar