Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T02:03:26.519Z Has data issue: false hasContentIssue false

Fine-grained laminated Quaternary sediments in the Ebro Valley (Spain): characteristics and formation

Published online by Cambridge University Press:  09 July 2018

M. T. Garcia-Gonzalez
Affiliation:
Departamento de Geoquímica y Mineralogía. Centro de Ciencias Medioambientales, CSIC Serrano, 115 dup. 28006 Madrid, Spain
J. Wierzchos
Affiliation:
Departamento de Geoquímica y Mineralogía. Centro de Ciencias Medioambientales, CSIC Serrano, 115 dup. 28006 Madrid, Spain
C. Vizcayno
Affiliation:
Departamento de Geoquímica y Mineralogía. Centro de Ciencias Medioambientales, CSIC Serrano, 115 dup. 28006 Madrid, Spain
R. Rodriguez
Affiliation:
Departamento de Meteorología y Ciencia del Suelo, ETSIA, Alcalde Rovira Roure, 144, Lleida, Spain

Abstract

Fine-grained sediments are a major parent material in Ebro Valley soils. During the 1960s, the area was transformed by irrigation and soils underwent serious degradation processes. The sediments have a fine texture, high CaCO3 contents and high salinity-sodicity levels, and contain illite as the most important phyllosilicate in the fine fractions. Two groups of finely laminated organization have been recognized in terms of layer thickness and grain-size distribution. Based on texture, the microstructure of the silty and clayey layers is different, irrespective of their mode of formation; porosity characteristics also differ between layers, leading exclusively to a capillary evaporation flow that results in salinization of the plough horizons. The sediments are formed by two different mechanisms, each layer resulting from uninterrupted sedimentation of a suspension or from deposition of suspended particles by water discharge.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amezketa, E. (1992) Fisico-quimica estabilidad estructural y técnicas de lavado de suelos salino-sódicos del sistema de riegos Monegros-Flumen, Huesca. PhD thesis, Univ. Politécnica de Cataluna, Lérida, Spain.Google Scholar
Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G. & Tursina, T. (1985) Handbook .for Soil Thin Section Description. Waine Research Publications, Wolverhampton, England.Google Scholar
Colling-George, N. (1991) Drainage and soil structure a review. Aust. J. Soil Res. 26, 923933 Google Scholar
Herrero, J., Rodriguez-Ochoa, R. & Porta, J. (1989) Colmatacién de drenes en suelos afectados por salinidad (Institución Fernando el Cató1ico, editor). Zaragoza, Spain.Google Scholar
Martinez-Beltran, J. (1978) Drainage and reclamation of salt affected soils in the Bárdenas area (Spain). ILRI, Wageningen.Google Scholar
Ortega, M. (1979) Mineralogía de la Block Formation Depresión de Granada. PhD thesis, Univ. Granada, Spain.Google Scholar
Porta, J. & Rodriguez-Ochoa, R. (1991) Translocaciones sótidas en suelos con características sódicas en Monegros-FIumen, Huesca: Procesos e implicaciones para el uso agrícola. Suelo y Planta, 1, 603617.Google Scholar
Porta, J., Rodriguez-Ochoa, R., Garcia-Gonzalez, M.T. & Vizcayno, C. (1992) Material originario laminado en suelos afectados pot sales en el Valle del Ebro: Implicaciones tecnológicas y de uso. Pp. 305–310 in: III Congreso Nacional de la Ciencia del Suelo (Sociedad Espanola de la Ciencia del Suelo, editor). Pamplona, Spain.Google Scholar
Rengasamy, P. & Olsson, K.A. (1991) Sodicity and soil structure. Aust. J. Soil Res. 26, 935952.Google Scholar
Rodriguez-Ochoa, R., Herrero, J. & Porta, J. (1990) Micromorphological assessment of drain siltation risk indexes in a saline-sodic soil in Monegros irrigation District (Spain). Pp. 41-52 in: Soil Micromorphology: a Basic and Applied Science (Douglas, L.A., editor). Elsevier, Amsterdam.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper, 391-C, C1-C31. United States Government Printing Office, Washington, DC.Google Scholar
Sergeyev, Y.M., Grabowska-Olszewska, B., Osipov, V.I., Sokolov, V.N. & Kolmenski, Y.N. (1980) The classification of microstructures of clay soils. J. Microsc. 120, 237260.Google Scholar
Shainberg, I., Rhoades, J.D., Suarez, D.L. & Prather, R.J. (1981) Effect of mineral weathering on clay dispersion and hydraulic conductivity of sodic soils. Soil Sci. Soc. Amer. J. 45, 287291.Google Scholar
Wlerzchos, J., Ascaso, C. & Garcia-Gonzalez, M.T. (1992) A new method of dehydration for pure clay materials using Peldri II. Clays Clay Miner., 40, 230236.Google Scholar