Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T09:03:21.776Z Has data issue: false hasContentIssue false

Ferripyrophyllite and related Fe3+-rich 2:1 clays in Recent deposits of Atlantis II Deep, Red Sea

Published online by Cambridge University Press:  09 July 2018

D. Badaut
Affiliation:
Lab. de Géochimie des Roches Sédimentaires, URA 723 du CNRS, Bât. 504, Université de Paris-Sud, 91405 Orsay Cédex
A. Decarreau
Affiliation:
Lab. Pétrologie de la Surface, URA 721 du CNRS, Université de Poitiers, 40 Av. du Recteur Pineau, 86022 Poitiers Cédex
G. Besson
Affiliation:
Lab. de Cristallographie, URA 810 du CNRS, Université d'Orléans, rue de Chartres, BP 6057, 45067 Orleans Cédex 2, France

Abstract

Iron-rich dioctahedral 2:1 clays were sampled in metalliferous sediments from Atlantis II Deep (Red Sea), and studied by XRD, TEM, FTIR and Mössbauer spectroscopy. One sample with the structural formula (Si3·94Fe3+0·06)(Fe3+1·90Mg0·10)K0·1(Mg, Ca)0·03 is closer to the theoretical end-member ferripyrophyllite Si4Fe3+2O10(OH)2 than any other Fe-rich clay previously described. Other samples appear as mixed-layered clays: ferripyrophyllite-hydroferripyrophyllite or hydroferripyrophyllite-celadonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annersten, H. (1974) Mossbauer studies of natural biotite. Am. Miner., 63, 1107–1115.Google Scholar
Annersten, H., Devanarayaman, S., Haggstrom, L. & Wappling, R. (1971) Mossbauer study of synthetic ferriphlogopite. Phys. Status Solid (B), 48, 137–138.Google Scholar
Backer, H. & Richter, H. (1973) Die rezente hydrothermal—sedimentare Lagerstatte Atlantis II—Tief im Roten Meer. Geol. Rundschau, 62, 697–740.Google Scholar
Badaut, D. (1988) Les argiles et les composes silico-ferriques des sediments metalliferes de la fosse Atlantic II (Mer Rouge).Thesis, Univ. Paris-Sud, Orsay, France.Google Scholar
Badaut, D., Besson, G., Decarreau, A. & Rautureau, M. (1985) Occurrence of a ferrous trioctahedral smectite in recent sediments of Atlantic II Deep, Red Sea. Clay Miner., 20, 389404.Google Scholar
Badaut, D., Blanc, G. & Decarreau, A. (1990) Variation des mineraux argileux ferriferes, en fonction du temps et de Tespace, dans les depots metalliferes de la fosse Atlantis II en Mer Rouge. C.R. Acad. Sci., Paris, 310, II, 10691075.Google Scholar
Bagin, V.I., Gendler, T.S., Daynyak, L.G. & Kuz'min, R.N. (1980) Mossbauer, thermomagnetic and X-ray study of cation ordering and high-temperature decomposition in biotite. Clays Clay Miner., 28, 188–196.CrossRefGoogle Scholar
Bancroft, G.M. (1973) Mossbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists. McGraw Hill, New York.Google Scholar
Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, V.A. (1983) Use of diffraction and Mossbauer methods for the structural and crystallochemical characterization of nontronites. J. Appl. Cryst., 16, 374–383.CrossRefGoogle Scholar
Bischoff, J.L. (1972) A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner., 20, 217–223.Google Scholar
Blanc, G., Boulegue, J., Badaut, D. & Stouff, P. (1985) Premiers resultats de la campagne oceanographique Hydrotherm (mai 1985) due Marion Dufresne sur la fosse Atlantic II (Mer Rouge). C.R. Acad. Sci., Paris, 302, II, 175180.Google Scholar
Brindley, C. W. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Buckley, A., Bevan, J.C., Brown, K.M. & Johnson, L.R. (1978) Glauconite and celadonite: two separate mineral species. Mineral. Mag., 42, 373–382.Google Scholar
Butuzova, G.Y., Drits, V.A., Lisistyana, N. A., Tsipursky, S.I. & Dimitrik, A.L. (1979) Formation dynamics of clay minerals in ore-bearing sediments in the Atlantic II basin, Red Sea. Lithil. Miner. Resources, 14, 23–32.Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Drits, V.A., Gorshkov, A., Ermilova, L.P., Goilo, E.A. & Rudnitskaya, E.S. (1979a) The ferric analogue of pyrophyllite and related phases. Proc. Int. Clay Conf. Oxford,, 5564.Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Drits, V.A., Gorshkov, A., Ermilova, L.P., Goilo, E.A. & Rudnitskaya, E.S. (1979b) Uber ferripyrophyllit. Chem. Erde, 38, 324–330.Google Scholar
Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mossbauer spectroscopy. Atomic Energy Review, 18, 73–124.Google Scholar
Coey, J.M.D., Chukhrov, F.V. & Zyvagin, B.B. (1984) Cation distribution, Mossbauer spectra and magnetic properties of ferripyrophyllite. Clays Clay Miner., 32, 198–204.Google Scholar
Daynyak, L.G., Bookin, A.S., Drits, V.A. & Tsipursky, S.I. (1981) Mossbauer and electron diffraction study of cation distribution in celadonite. Acta Cryst. A37, C363.Google Scholar
Daynyak, L. & Drits, V.A. (1987) Interpretation of Mossbauer spectra of nontronite, celadonite and glauconite. Clays Clay Miner., 35, 363–372.CrossRefGoogle Scholar
Decarreau, A., Badaut, D. & Blanc, G. (1990) Origin and temperature formation of Fe-rich clays from Atlantis II Deep deposits (Red Sea). An oxygen isotopic geochemistry approach. Chem. Geol., 84, 363–364.Google Scholar
Degens, E.T. & Ross, D.A. (1969) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer Verlag, New York.Google Scholar
Delage, P., Tessier, D. & Marcel-Audiguier, M. (1982) Use of the Cryoscan apparatus for observation of freeze- fractured planes of a sensitive Quebec clay in scanning microscopy. Can. Geotech. J., 19, 111–114.Google Scholar
Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Miner., 12, 181–194.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals.Mineralogical Society, London.Google Scholar
Farmer, V.C., Russell, J.D., Ahlrichs, J.L. & Velde, B. (1968) Vibrationsdugroupehydroxyledanslessilicatesen couches. Bull. Groupe Fr. Argiles, 19, 5–10.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mossbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner., 24, 53–59.Google Scholar
Goulart, E.P. (1976). Different smectite types in sediment of the Red Sea. Geol. Jb. D17, 135149.Google Scholar
Guennoc, P. & Thisse, Y. (1982) Genese de Touverture de la Mer Rouge et des mineralisations des fosses Axiales. Synthese bibliographique. Doc. BRGM, 51, 88 p.Google Scholar
Heller, L., Farmer, V.C., Mackenzie, R.C., Mitchell, B.D. & Taylor, H.F.W. (1962) The dehydroxylation and rehydroxylation of trimorphic dioctahedral clay minerals. Clay Miner. Bull., 5, 56–72.Google Scholar
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mossbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Miner., 7, 56–72.CrossRefGoogle Scholar
Hoffert, M., Perseil, A., Hekinian, R., Choukroune, P., Needham, H.D., Franceteau, J. & Le Pichon, X. (1978) Hydrothermal deposits sampled by diving saucer in transform fault "A" near 37°N on the Mid-Atlantique Ridge Famous Area. Oceanologica Acta, 1, 73–86.Google Scholar
Hogg, C.S. & Meads, R.E. (1970) The Mossbauer spectra of several micas and related minerals. Mineral. Mag., 37, 606–614.Google Scholar
Honnorez, J., Karpoff, A.M. & Trauth-Badaut, D. (1983) Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, Holes 506, 506 C and 507 D. Deep Sea Drilling Project Leg 70 (Preliminary Data). Int. Repts. DSDP, 70, US Govt. Printing Office, Washington.Google Scholar
Kotlicki, A., Szczyrbat, T. & Wiewiora, A. (1981) Mossbauer study of glauconites from Poland. Clay Miner., 16, 221–230.Google Scholar
McConchie, D.M., Ward, J.B., McCann, V.B. & Lewis, D.W. (1979) Mossbauer investigation of glauconite and its geological significance. Clays Clay Miner., 27, 339–348.Google Scholar
MacMurty, G.M., Wang, C.H. & Yeh, H.W. (1983) Chemical and isotopic investigations into the origin of clay minerals from Galapagos hydrothermal mounds field. Geochim. Cosmochim. Acta, 47, 415489.Google Scholar
Mering, J. & Oberlin, A. (1971) The smectites. Pp. 193-229 in: The Electron-Optical Investigation of Clays.(Gard, J.A., editor). Mineralogical Society, London.Google Scholar
Miller, A.R., Densmore, C.D., Degens, E.T., Hataway, J.C., Manheim, F.T., MacFarling, P.F., Pocklington, R. & Jokela, A. (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. Cosmochim. Acta, 30, 341–359.Google Scholar
Murnane, R. & Clague, D.A. (1983) Nontronite from low temperature hydrothermal system on the Juan de Fuca Ridge. Earth Planetary Sci. Letters, 65, 343–352.Google Scholar
Pottorf, R. J. & Barnes, H.L. (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II deep, Red Sea. Econ. Geol., 5, 198–223.Google Scholar
Reynolds, R.C. Jr. (1980) Interstratified day minerals. Pp. 249-303 in: Crystal Structure of Clay Minerals and their X-ray Identification.(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD a Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays. Reynolds, R.G. Jr., 8 Brook Dr., Hanover, NH 03755, USA.Google Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mossbauer spectra of dioctahedral smectites. Clays Clay Miner., 25, 94–101.Google Scholar
Serratosa, J.M. (1960) Dehydration studies by I.R. spectroscopy. Am. Miner., 45, 1101–1104.Google Scholar
Shanks, W.C. & Bischoff, J.L. (1977) Ore transport and deposition in the Red Sea geothermal system; a geochemical model. Geochim. Cosmochim. Acta, 41, 171–177.Google Scholar
Shanks, W.C. & Bischoff, J.L. (1980) Geochemistry, sulfur isotope composition and accumulation rates of Red Sea geothermal deposits. Econ. Geol., 75, 445459.Google Scholar
Singer, A., Stoffers, P., Heller-Kallai, L. & Szafranek, D. (1984) Nontronite in a deep-sea core from the South- Pacific. Clays Clay Miner., 32, 375–382.Google Scholar
Sloninskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Miner., 21, 377–388.Google Scholar
Stubican, V. & Roy, R. (1961) A new approach of the assignment of I.R. absorption bands in layer silicates. Z. Krist., 115, 200–214.Google Scholar
Tessier, D. (1984) Etude experimentale de Vorganisation des materiaux argileux.Thesis, Univ. Paris VII, France.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier Sci. Publ. Co., New York.Google Scholar
Whitmarsh, R.B., Ross, D.A., Ali, S., Boudreau, J.E., Coleman, R., Fleiher, R.L. Girdler, R.W., Manheim, F.T., Matter, A., Nigrini, C., Stoffers, P. & Supko, P.R. (1974) Red Sea. Pp. 539-1180 in: Int. Repts. DSDP23, US Government Printing Office, Washington.Google Scholar
Wise, W.S. & Eugster, H.P. (1964) Celadonite: synthesis, thermal stability and occurrence. Am. Miner., 49, 1031–1083.Google Scholar
Zierenberg, R.A. & Shanks, W.C. (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Eco. Geol., 78, 57–72.Google Scholar